Dynamic Patterns


Book Description

foreword by Hermann Haken For the past twenty years Scott Kelso's research has focused on extending the physical concepts of self- organization and the mathematical tools of nonlinear dynamics to understand how human beings (and human brains) perceive, intend, learn, control, and coordinate complex behaviors. In this book Kelso proposes a new, general framework within which to connect brain, mind, and behavior.Kelso's prescription for mental life breaks dramatically with the classical computational approach that is still the operative framework for many newer psychological and neurophysiological studies. His core thesis is that the creation and evolution of patterned behavior at all levels--from neurons to mind--is governed by the generic processes of self-organization. Both human brain and behavior are shown to exhibit features of pattern-forming dynamical systems, including multistability, abrupt phase transitions, crises, and intermittency. Dynamic Patterns brings together different aspects of this approach to the study of human behavior, using simple experimental examples and illustrations to convey essential concepts, strategies, and methods, with a minimum of mathematics. Kelso begins with a general account of dynamic pattern formation. He then takes up behavior, focusing initially on identifying pattern-forming instabilities in human sensorimotor coordination. Moving back and forth between theory and experiment, he establishes the notion that the same pattern-forming mechanisms apply regardless of the component parts involved (parts of the body, parts of the nervous system, parts of society) and the medium through which the parts are coupled. Finally, employing the latest techniques to observe spatiotemporal patterns of brain activity, Kelso shows that the human brain is fundamentally a pattern forming dynamical system, poised on the brink of instability. Self-organization thus underlies the cooperative action of neurons that produces human behavior in all its forms.




The Dynamics Of Pattern


Book Description

Spirals, vortices, crystalline lattices, and other attractive patterns are prevalent in Nature. How do such beautiful patterns appear from the initial chaos? What universal dynamical rules are responsible for their formation? What is the dynamical origin of spatial disorder in nonequilibrium media? Based on the many visual experiments in physics, hydrodynamics, chemistry, and biology, this invaluable book answers those and related intriguing questions. The mathematical models presented for the dynamical theory of pattern formation are nonlinear partial differential equations. The corresponding theory is not so accessible to a wide audience. Consequently, the authors have made every attempt to synthesize long and complex mathematical calculations to exhibit the underlying physics. The book will be useful for final year undergraduates, but is primarily aimed at graduate students, postdoctoral fellows, and others interested in the puzzling phenomena of pattern formation.




Pattern Formation and Dynamics in Nonequilibrium Systems


Book Description

An account of how complex patterns form in sustained nonequilibrium systems; for graduate students in biology, chemistry, engineering, mathematics, and physics.




Patterns and Interfaces in Dissipative Dynamics


Book Description

Spontaneous pattern formation in nonlinear dissipative systems far from equilibrium occurs in a variety of settings in nature and technology, and has applications ranging from nonlinear optics through solid and fluid mechanics, physical chemistry and chemical engineering to biology. This book explores the forefront of current research, describing in-depth the analytical methods that elucidate the complex evolution of nonlinear dissipative systems.




Patterns in Excitable Media


Book Description

Excitable media comprise a class of models for a wide range of physical, chemical, and biological systems that exhibit spontaneous formation of spatial patterns. Patterns in Excitable Media: Genesis, Dynamics, and Control explores several aspects of the dynamics of such patterns—in particular their evolution upon interaction with structural and functional heterogeneities in the system. The book provides readers with an introduction to recent developments in the interdisciplinary field of dynamics and control of patterns in nonlinear biological systems described by excitable media models. It also discusses low-amplitude control schemes for eliminating such patterns from an excitable medium which has direct clinical relevance in view of the close connection to life-threatening cardiac arrhythmia.




Advances in Dynamics, Patterns, Cognition


Book Description

This book focuses on recent progress in complexity research based on the fundamental nonlinear dynamical and statistical theory of oscillations, waves, chaos, and structures far from equilibrium. Celebrating seminal contributions to the field by Prof. M. I. Rabinovich of the University of California at San Diego, this volume brings together perspectives on both the fundamental aspects of complexity studies, as well as in applications in different fields ranging from granular patterns to understanding of the cognitive brain and mind dynamics. The slate of world-class authors review recent achievements that together present a broad and coherent coverage of modern research in complexity greater than the sum of its parts.




Nonlinear Dynamics


Book Description

This self-contained treatment covers all aspects of nonlinear dynamics, from fundamentals to recent developments, in a unified and comprehensive way. Numerous examples and exercises will help the student to assimilate and apply the techniques presented.




Neuronal Dynamics


Book Description

This solid introduction uses the principles of physics and the tools of mathematics to approach fundamental questions of neuroscience.




Learning Dynamics NAV Patterns


Book Description

Create solutions that are easy to maintain, quick to upgrade, and follow proven concepts and designs About This Book Design software that is maintainable outside the ecosystem of their creators Ensure quality by following patterns that have been proved to work Over two dozen practical Architectural and Design patterns Who This Book Is For Learning Dynamics NAV Patterns is intended for developers, architects, (technical) consultants, and application managers. You may have very little or no knowledge about NAV patterns, but you should be acquainted with programming. What You Will Learn Apply object-oriented practices to C/AL programming Structure your application to avoid merge conflicts Refactor legacy code and avoid anti-patterns Design decision trees to decide when to use which patterns Clone codes and their application in Dynamics NAV Make your application extensible by creating predefined hooks and facades In Detail Microsoft Dynamics NAV is a complete ERP system, which also contains a robust set of development tools to support customization and enhancement. These include an object designer for each of the seven application object types, a business application oriented programming language with .NET interface capability, a compiler, a debugger, and programming testing language support. Learning Dynamics NAV Patterns will guide you through the NAV way of solving problems. This book will first introduce you to patterns and the software architecture of the NAV and then help you to build an example application. Then, it walks you through the details of architectural patterns, design patterns, and implementation patterns. This book will also talk about anti-patterns and handling legacy code. Finally, it teaches you to build solutions using patterns. Proven patterns and best practices will help you create better solutions that are easy to maintain in larger teams across several locations. It will guide you through combining abstract patterns using easy-to-understand examples and will help you decide which patterns to use in which scenarios. Style and approach This book explains the concepts of patterns, code structuring, and object-oriented concepts in a way that is easy to understand for Dynamics NAV specialists through practical examples.




Models of Science Dynamics


Book Description

Models of Science Dynamics aims to capture the structure and evolution of science, the emerging arena in which scholars, science and the communication of science become themselves the basic objects of research. In order to capture the essence of phenomena as diverse as the structure of co-authorship networks or the evolution of citation diffusion patterns, such models can be represented by conceptual models based on historical and ethnographic observations, mathematical descriptions of measurable phenomena, or computational algorithms. Despite its evident importance, the mathematical modeling of science still lacks a unifying framework and a comprehensive study of the topic. This volume fills this gap, reviewing and describing major threads in the mathematical modeling of science dynamics for a wider academic and professional audience. The model classes presented cover stochastic and statistical models, system-dynamics approaches, agent-based simulations, population-dynamics models, and complex-network models. The book comprises an introduction and a foundational chapter that defines and operationalizes terminology used in the study of science, as well as a review chapter that discusses the history of mathematical approaches to modeling science from an algorithmic-historiography perspective. It concludes with a survey of remaining challenges for future science models and their relevance for science and science policy.