Ballistic Materials and Penetration Mechanics


Book Description

Ballistic Materials and Penetration Mechanics deals with ballistically protective materials and penetration mechanics. The book discusses historical and practical considerations of ballistic protection, including metallic armor, as well as ballistic testing methodology, the ability of a protective material to stop or slow down a particular projectile, and the theoretical aspects of penetration mechanics. It also highlights the importance of stress wave analysis in the penetration and spalling phenomena. Organized into 12 chapters, this volume begins with an overview of the history of the armor and the modern helmet. It proceeds with a discussion of variations in ballistic test methods, errors in test methods, and the importance of the hardness and geometry of both the target and the projectile. The next chapters focus on the importance of fibrous armor, materials that are visually transparent and resistant to penetration by high-energy projectiles and fragments, and transparent armor and ceramic composite armor. The reader is also introduced to materials used in the design of metallic armor, the role of stress waves in the penetration problem, and the use of computer simulation to analyze ballistic impact experiments. The book looks at numerical techniques for modeling hypervelocity impact and concludes with a chapter on the penetration mechanics of textile structures. This book is a valuable resource for scientists working at government, industrial, and university laboratories, as well as law enforcement officers and others who want information on materials that provide the best protection against damage from impacts, explosions, and bullets.




Modern Impact and Penetration Mechanics


Book Description

Indispensable treatise on the mechanics of extreme dynamic events, including impact, shocks, penetration and high-rate material response.




Opportunities in Protection Materials Science and Technology for Future Army Applications


Book Description

Armor plays a significant role in the protection of warriors. During the course of history, the introduction of new materials and improvements in the materials already used to construct armor has led to better protection and a reduction in the weight of the armor. But even with such advances in materials, the weight of the armor required to manage threats of ever-increasing destructive capability presents a huge challenge. Opportunities in Protection Materials Science and Technology for Future Army Applications explores the current theoretical and experimental understanding of the key issues surrounding protection materials, identifies the major challenges and technical gaps for developing the future generation of lightweight protection materials, and recommends a path forward for their development. It examines multiscale shockwave energy transfer mechanisms and experimental approaches for their characterization over short timescales, as well as multiscale modeling techniques to predict mechanisms for dissipating energy. The report also considers exemplary threats and design philosophy for the three key applications of armor systems: (1) personnel protection, including body armor and helmets, (2) vehicle armor, and (3) transparent armor. Opportunities in Protection Materials Science and Technology for Future Army Applications recommends that the Department of Defense (DoD) establish a defense initiative for protection materials by design (PMD), with associated funding lines for basic and applied research. The PMD initiative should include a combination of computational, experimental, and materials testing, characterization, and processing research conducted by government, industry, and academia.




Advanced Fibrous Composite Materials for Ballistic Protection


Book Description

Advanced Fibrous Composite Materials for Ballistic Protection provides the latest information on ballistic protection, a topic that remains an important issue in modern times due to ever increasing threats coming from regional conflicts, terrorism, and anti-social behavior. The basic requirements for ballistic protection equipment are first and foremost, the prevention of a projectile from perforating, the reduction of blunt trauma to the human body caused by ballistic impact, the necessity that they are thermal and provide moisture comfort, and that they are lightweight and flexible to guarantee wearer's mobility. The main aim of this book is to present some of the most recent developments in the design and engineering of woven fabrics and their use as layering materials to form composite structures for ballistic personal protection. Chapter topics include High Performance Ballistic Fibres, Ultra-High Molecular Weight Polyethylene (UHMWPE), Ballistic Damage of Hybrid Composite Materials, Analysis of Ballistic Fabrics and Layered Composite Materials, and Multi-Scale Modeling of Polymeric Composite Materials for Ballistic Protection. - Contributions from leading experts in the field - Cutting edge developments on the engineering of ballistic materials - Comprehensive analysis of the development and uses of advanced fibrous composite materials




Lightweight Ballistic Composites


Book Description

Ballistic composites need to be lightweight and durable as well as exhibiting high impact resistance and damage tolerance. This important book reviews these requirements, how the materials used for ballistic composites meet them and their range of applications.After an introductory chapter, Lightweight ballistic composites is split into two main sections. The first part of the book explores material requirements and testing. There are chapters on bullets and bullet fragments, material responses to ballistic impact, standards and specifications, modelling and test methods. Part Two reviews the range of materials used, production methods and applications. Topics discussed include high-performance ballistic fibres and ceramics, non-woven ballistic and prepreg composites, and their uses in body armour, vehicle and aircraft protection.This major book is the first of its kind to give a comprehensive review of the current use of lightweight ballistic composites in both military and law-enforcement applications. It is an invaluable reference for all those involved in personnel and vehicle protection in defence and police forces around the world. - Reviews the current use of lightweight ballistic composites in both military and law-enforcement application - An authoritative overview of the range of materials used, production methods and applications - Explores material requirements and testing




Applied High-Speed Plate Penetration Dynamics


Book Description

High-speed impact dynamics is of interest in the fundamental sciences, e.g., astrophysics and space sciences, and has a number of important applications in military technologies, homeland security and engineering. When compared with experiments or numerical simulations, analytical approaches in impact mechanics only seldom yield useful results. However, when successful, analytical approaches allow us to determine general laws that are not only important in themselves but also serve as benchmarks for subsequent numerical simulations and experiments. The main goal of this monograph is to demonstrate the potential and effectiveness of analytical methods in applied high-speed penetration mechanics for two classes of problem. The first class of problem is shape optimization of impactors penetrating into ductile, concrete and some composite media. The second class of problem comprises investigation of ballistic properties and optimization of multi-layered shields, including spaced and two-component ceramic shields. Despite the massive use of mathematical techniques, the obtained results have a clear engineering meaning and are presented in an easy-to-use form. One of the chapters is devoted solely to some common approximate models, and this is the first time that a comprehensive description of the localized impactor/medium interaction approach is given. In the monograph the authors present systematically their theoretical results in the field of high-speed impact dynamics obtained during the last decade which only partially appeared in scientific journals and conferences proceedings.




Application of Fracture Mechanics to Composite Materials


Book Description

This multiauthor volume provides a useful summary of current knowledge on the application of fracture mechanics to composite materials. It has been written to fill the gap between the literature on fundamental principles of fracture mechanics and the special publications on the fracture properties of conventional materials, such as metals, polymers and ceramics.The data are represented in the form of about 420 figures (including diagrams, schematics and photographs) and 80 tables. The author index covers more than 500 references, and the subject index more than 1000 key words.




Mechanics of Composite and Multi-functional Materials, Volume 7


Book Description

Experimental Mechanics of Composite, Hybrid, and Multifunctional Materials, Volume 7 of the Proceedings of the 2015SEM Annual Conference& Exposition on Experimental and Applied Mechanics, the seventh volume of nine from the Conference, brings together contributions to this important area of research and engineering. The collection presents early findings and case studies on a wide range of areas, including: Multifunctional Materials Hybrid Materials Novel Composites Nano- and Particle-Reinforced Composites Additive Manufacturing of Composites Digital Imaging of Composites Damage Detection Non-Destructive Evaluation Fatigue and Fracture of Composites Manufacturing and Joining of Composites Advanced Composites Applications




Damage in Composites


Book Description

The fifth volume of the ASC series on advanced composites contains critical information on static and dynamic composite failure and how it is predicted and modeled using novel computational methods and micromechanical analysis.