People Are Like Math I Hate Math: Math Hater Blank Lined Note Book


Book Description

Do you hate math and algebra? Not a fan of homework? This cool blank lined note book will make a cool gift for people who are too cool for school 120 Pages High Quality Paper 6" x 9" Paperback notebook Soft Matte Cover Great size to carry in your back, for work, school or in meetings Useful as a journal, notebook or composition book Cool birthday, christmas and anniversary gift




Math Without Numbers


Book Description

'The whizz-kid making maths supercool. . . A brilliant book that takes everything we know (and fear) about maths out of the equation - starting with numbers' The Times 'A cheerful, chatty, and charming trip through the world of mathematics. . . Everyone should read this delightful book' Ian Stewart, author of Do Dice Play God? The only numbers in this book are the page numbers. The three main branches of abstract math - topology, analysis, and algebra - turn out to be surprisingly easy to grasp. Or at least, they are when our guide is a math prodigy. With forthright wit and warm charm, Milo Beckman upends the conventional approach to mathematics, inviting us to think creatively about shape and dimension, the infinite and the infinitesimal, symmetries, proofs, and all how all these concepts fit together. Why is there a million dollar prize for counting shapes? Is anything bigger than infinity? And how is the 'truth' of mathematics actually decided? A vivid and wholly original guide to the math that makes the world tick and the planets revolve, Math Without Numbers makes human and understandable the elevated and hypothetical, allowing us to clearly see abstract math for what it is: bizarre, beautiful, and head-scratchingly wonderful.




Mindstorms


Book Description

In this revolutionary book, a renowned computer scientist explains the importance of teaching children the basics of computing and how it can prepare them to succeed in the ever-evolving tech world. Computers have completely changed the way we teach children. We have Mindstorms to thank for that. In this book, pioneering computer scientist Seymour Papert uses the invention of LOGO, the first child-friendly programming language, to make the case for the value of teaching children with computers. Papert argues that children are more than capable of mastering computers, and that teaching computational processes like de-bugging in the classroom can change the way we learn everything else. He also shows that schools saturated with technology can actually improve socialization and interaction among students and between students and teachers. Technology changes every day, but the basic ways that computers can help us learn remain. For thousands of teachers and parents who have sought creative ways to help children learn with computers, Mindstorms is their bible.




A Mathematician's Lament


Book Description

“One of the best critiques of current K-12 mathematics education I have ever seen, written by a first-class research mathematician who elected to devote his teaching career to K-12 education.” —Keith Devlin, NPR’s “Math Guy” A brilliant research mathematician reveals math to be a creative art form on par with painting, poetry, and sculpture, and rejects the standard anxiety-producing teaching methods used in most schools today. Witty and accessible, Paul Lockhart’s controversial approach will provoke spirited debate among educators and parents alike, altering the way we think about math forever. Paul Lockhart is the author of Arithmetic, Measurement, and A Mathematician’s Lament. He has taught mathematics at Brown University, University of California, Santa Cruz, and to K-12 level students at St. Ann’s School in Brooklyn, New York.




Innumeracy


Book Description

Readers of Innumeracy will be rewarded with scores of astonishing facts, a fistful of powerful ideas, and, most important, a clearer, more quantitative way of looking at their world. Why do even well-educated people understand so little about mathematics? And what are the costs of our innumeracy? John Allen Paulos, in his celebrated bestseller first published in 1988, argues that our inability to deal rationally with very large numbers and the probabilities associated with them results in misinformed governmental policies, confused personal decisions, and an increased susceptibility to pseudoscience of all kinds. Innumeracy lets us know what we're missing, and how we can do something about it. Sprinkling his discussion of numbers and probabilities with quirky stories and anecdotes, Paulos ranges freely over many aspects of modern life, from contested elections to sports stats, from stock scams and newspaper psychics to diet and medical claims, sex discrimination, insurance, lotteries, and drug testing.




The Sense of an Ending


Book Description

BOOKER PRIZE WINNER • NATIONAL BESTSELLER • A novel that follows a middle-aged man as he contends with a past he never much thought about—until his closest childhood friends return with a vengeance: one of them from the grave, another maddeningly present. A novel so compelling that it begs to be read in a single setting, The Sense of an Ending has the psychological and emotional depth and sophistication of Henry James at his best, and is a stunning achievement in Julian Barnes's oeuvre. Tony Webster thought he left his past behind as he built a life for himself, and his career has provided him with a secure retirement and an amicable relationship with his ex-wife and daughter, who now has a family of her own. But when he is presented with a mysterious legacy, he is forced to revise his estimation of his own nature and place in the world.




The Mathematics of Love


Book Description

In this must-have for anyone who wants to better understand their love life, a mathematician pulls back the curtain and reveals the hidden patterns—from dating sites to divorce, sex to marriage—behind the rituals of love. The roller coaster of romance is hard to quantify; defining how lovers might feel from a set of simple equations is impossible. But that doesn’t mean that mathematics isn’t a crucial tool for understanding love. Love, like most things in life, is full of patterns. And mathematics is ultimately the study of patterns—from predicting the weather to the fluctuations of the stock market, the movement of planets or the growth of cities. These patterns twist and turn and warp and evolve just as the rituals of love do. In The Mathematics of Love, Dr. Hannah Fry takes the reader on a fascinating journey through the patterns that define our love lives, applying mathematical formulas to the most common yet complex questions pertaining to love: What’s the chance of finding love? What’s the probability that it will last? How do online dating algorithms work, exactly? Can game theory help us decide who to approach in a bar? At what point in your dating life should you settle down? From evaluating the best strategies for online dating to defining the nebulous concept of beauty, Dr. Fry proves—with great insight, wit, and fun—that math is a surprisingly useful tool to negotiate the complicated, often baffling, sometimes infuriating, always interesting, mysteries of love.




Geometry Revisited


Book Description

Among the many beautiful and nontrivial theorems in geometry found in Geometry Revisited are the theorems of Ceva, Menelaus, Pappus, Desargues, Pascal, and Brianchon. A nice proof is given of Morley's remarkable theorem on angle trisectors. The transformational point of view is emphasized: reflections, rotations, translations, similarities, inversions, and affine and projective transformations. Many fascinating properties of circles, triangles, quadrilaterals, and conics are developed.




The Cognitive-Theoretic Model of the Universe: A New Kind of Reality Theory


Book Description

Paperback version of the 2002 paper published in the journal Progress in Information, Complexity, and Design (PCID). ABSTRACT Inasmuch as science is observational or perceptual in nature, the goal of providing a scientific model and mechanism for the evolution of complex systems ultimately requires a supporting theory of reality of which perception itself is the model (or theory-to-universe mapping). Where information is the abstract currency of perception, such a theory must incorporate the theory of information while extending the information concept to incorporate reflexive self-processing in order to achieve an intrinsic (self-contained) description of reality. This extension is associated with a limiting formulation of model theory identifying mental and physical reality, resulting in a reflexively self-generating, self-modeling theory of reality identical to its universe on the syntactic level. By the nature of its derivation, this theory, the Cognitive Theoretic Model of the Universe or CTMU, can be regarded as a supertautological reality-theoretic extension of logic. Uniting the theory of reality with an advanced form of computational language theory, the CTMU describes reality as a Self Configuring Self-Processing Language or SCSPL, a reflexive intrinsic language characterized not only by self-reference and recursive self-definition, but full self-configuration and self-execution (reflexive read-write functionality). SCSPL reality embodies a dual-aspect monism consisting of infocognition, self-transducing information residing in self-recognizing SCSPL elements called syntactic operators. The CTMU identifies itself with the structure of these operators and thus with the distributive syntax of its self-modeling SCSPL universe, including the reflexive grammar by which the universe refines itself from unbound telesis or UBT, a primordial realm of infocognitive potential free of informational constraint. Under the guidance of a limiting (intrinsic) form of anthropic principle called the Telic Principle, SCSPL evolves by telic recursion, jointly configuring syntax and state while maximizing a generalized self-selection parameter and adjusting on the fly to freely-changing internal conditions. SCSPL relates space, time and object by means of conspansive duality and conspansion, an SCSPL-grammatical process featuring an alternation between dual phases of existence associated with design and actualization and related to the familiar wave-particle duality of quantum mechanics. By distributing the design phase of reality over the actualization phase, conspansive spacetime also provides a distributed mechanism for Intelligent Design, adjoining to the restrictive principle of natural selection a basic means of generating information and complexity. Addressing physical evolution on not only the biological but cosmic level, the CTMU addresses the most evident deficiencies and paradoxes associated with conventional discrete and continuum models of reality, including temporal directionality and accelerating cosmic expansion, while preserving virtually all of the major benefits of current scientific and mathematical paradigms.




The I Hate Mathematics! Book


Book Description

Hundreds of mathematical events, jokes, riddles, puzzles, investigations and experiments showing maths is relevant and fun.