People's Science


Book Description

“An engaging, insightful, and challenging call to examine both the rhetoric and reality of innovation and inclusion in science and science policy.” —Daniel R. Morrison, American Journal of Sociology Stem cell research has sparked controversy and heated debate since the first human stem cell line was derived in 1998. Too frequently these debates devolve to simple judgments—good or bad, life-saving medicine or bioethical nightmare, symbol of human ingenuity or our fall from grace—ignoring the people affected. With this book, Ruha Benjamin moves the terms of debate to focus on the shifting relationship between science and society, on the people who benefit—or don’t—from regenerative medicine and what this says about our democratic commitments to an equitable society. People’s Science uncovers the tension between scientific innovation and social equality, taking the reader inside California’s 2004 stem cell initiative, the first of many state referenda on scientific research, to consider the lives it has affected. Benjamin reveals the promise and peril of public participation in science, illuminating issues of race, disability, gender, and socio-economic class that serve to define certain groups as more or less deserving in their political aims and biomedical hopes. Ultimately, Ruha Benjamin argues that without more deliberate consideration about how scientific initiatives can and should reflect a wider array of social concerns, stem cell research—from African Americans’ struggle with sickle cell treatment to the recruitment of women as tissue donors—still risks excluding many. Even as regenerative medicine is described as a participatory science for the people, Benjamin asks us to consider if “the people” ultimately reflects our democratic ideals.




Science Education from People for People


Book Description

Contributing to the social justice agenda of redefining what science is and what it means in the everyday lives of people, this book introduces science educators to various dimensions of viewing science and scientific literacy from the standpoint of the learner, engaged with real everyday concerns within or outside school; develops a new form of scholarship based on the dialogic nature of science as process and product; and achieves these two objectives in a readable but scholarly way. Opposing the tendency to teach and do research as if science, science education, and scientific literacy could be imposed from the outside, the authors want science education to be for people rather than strictly about how knowledge gets into their heads. Taking up the challenges of this orientation, science educators can begin to make inroads into the currently widespread irrelevance of science in the everyday lives of people. Utmost attention has been given to making this book readable by the people from whose lives the topics of the chapters emerge, all the while retaining academic integrity and high-level scholarship. Wolff Michael Roth has been awarded the Distinguished Contributions Award by The National Association for Research in Science Teaching, for his contributions to research in this field. He has also been elected to be the Fellow of the American Association for Advancement of Science (AAAS) and Fellow of the American Educational Research Association.




Science of the People


Book Description

How do people understand science? How do they feel about science, how do they relate to it, what do they hope from it and what do they fear about it? Science of the People: Understanding and using science in everyday contexts helps answer these questions as the result of painstaking interviewing by Professor Joan Solomon of all and sundry in a fairly typical small town. The result is a unique overview of how a very wide range of adults, united only by local geography, relate to science. Many of the findings run contrary to what is widely believed about how science is learnt and about how people view it. Chapters include: An Approach to Awareness Publics for Science? Ethics and Action Interpretation and Change Joan Solomon, who sadly died before this book could be published, enjoyed an international reputation in science education. After a long career teaching science in secondary schools she moved into the university sector and ending up holding chairs of science education at the Open University, King’s College London and the University of Plymouth. She was a world leader in her subject and inspired classroom teachers and wrote a number of very influential papers with some of them. She produced many important books, booklets and other resources to help science teachers and science educators get to grips with the history and philosophy of science and the teaching of energy, amongst other topics. This book is essential reading for those involved in Science education and educational policy.




Science for the People


Book Description

For the first time, this book compiles original documents from Science for the People, the most important radical science movement in U.S. history. Between 1969 and 1989, Science for the People mobilized American scientists, teachers, and students to practice a socially and economically just science, rather than one that served militarism and corporate profits. Through research, writing, protest, and organizing, members sought to demystify scientific knowledge and embolden "the people" to take science and technology into their own hands. The movement's numerous publications were crucial to the formation of science and technology studies, challenging mainstream understandings of science as "neutral" and instead showing it as inherently political. Its members, some at prominent universities, became models for politically engaged science and scholarship by using their knowledge to challenge, rather than uphold, the social, political, and economic status quo. Highlighting Science for the People's activism and intellectual interventions in a range of areas -- including militarism, race, gender, medicine, agriculture, energy, and global affairs -- this volume offers vital contributions to today's debates on science, justice, democracy, sustainability, and political power.




A People's History of Science


Book Description

Challenges popular beliefs that credit such figures as Galileo, Newton, and Einstein with bringing about modern science, explaining how everyday laborers participated in creating science and continue to do so today, in an account that also documents how the development of science affects ordinary people. Original.




Learning Science in Informal Environments


Book Description

Informal science is a burgeoning field that operates across a broad range of venues and envisages learning outcomes for individuals, schools, families, and society. The evidence base that describes informal science, its promise, and effects is informed by a range of disciplines and perspectives, including field-based research, visitor studies, and psychological and anthropological studies of learning. Learning Science in Informal Environments draws together disparate literatures, synthesizes the state of knowledge, and articulates a common framework for the next generation of research on learning science in informal environments across a life span. Contributors include recognized experts in a range of disciplines-research and evaluation, exhibit designers, program developers, and educators. They also have experience in a range of settings-museums, after-school programs, science and technology centers, media enterprises, aquariums, zoos, state parks, and botanical gardens. Learning Science in Informal Environments is an invaluable guide for program and exhibit designers, evaluators, staff of science-rich informal learning institutions and community-based organizations, scientists interested in educational outreach, federal science agency education staff, and K-12 science educators.




Science by the People


Book Description

Longlisted for the Fleck Prize from the Society for Social Studies of Science (4S) Citizen science—research involving nonprofessionals in the research process—has attracted both strong enthusiasts and detractors. Many environmental professionals, activists, and scholars consider citizen science part of their toolkit for addressing environmental challenges. Critics, however, contend that it represents a corporate takeover of scientific priorities. In this timely book, two sociologists move beyond this binary debate by analyzing the tensions and dilemmas that citizen science projects commonly face. Key lessons are drawn from case studies where citizen scientists have investigated the impact of shale oil and gas, nuclear power, and genetically engineered crops. These studies show that diverse citizen science projects face shared dilemmas relating to austerity pressures, presumed boundaries between science and activism, and difficulties moving between scales of environmental problems. By unpacking the politics of citizen science, this book aims to help people negotiate a complex political landscape and choose paths moving toward social change and environmental sustainability.




The People's Science


Book Description

The work details the emergence, in the post-Napoleonic War period, of a growing popular interest in the critical potentialities of political economy. It considers why this occurred and discusses how the conceptual and analytical tools of political economy were utilised to formulate a critique of early industrial capitalism. The book examines the theories of labour exploitation and capitalist crisis which represented the essence of that critique both as they were elaborated by early-nineteenth-century British anti-capitalist and socialist writers and as they were popularised by writers in the working-class press of the period 1816-34. The book argues that by 1834 in consequence of the efforts of writers such as Hodgskin, Thompson, Gray, Owen and their popularisers the foundations of a distinctively anti-capitalist and socialist political economy had been established and widely disseminated. But these foundations were theoretically flawed. They were flawed by an overconcentration on the sphere of exchange which derived from a particular conception of the determination of exchange value under capitalism; an overconcentration which led on to the suggestion of remedies for the problem of working-class poverty and distress which were necessarily doomed to failure.




Understanding Young People's Science Aspirations


Book Description

Understanding Young People's Science Aspirations offers new evidence and understanding about how young people develop their aspirations for education, learning and, ultimately, careers in science. Integrating new findings from a major research study with a wide ranging review of existing international literature, it brings a distinctive sociological analytic lens to the field of science education. The book offers an explanation of how some young people do become dedicated to follow science, and what might be done to increase and broaden this population, exploring the need for increased scientific literacy among citizens to enable them to exercise agency and lead a life underpinned by informed decisions about their own health and their environment. Key issues considered include: why we should study young people’s science aspirations the role of families, social class and science capital in career choice the links between ethnicity, gender and science aspirations the implications for research, policy and practice. Set in the context of widespread international policy concern about the urgent need to improve, increase and diversify participation in post-16 science, this key text considers how we must encourage a supply of appropriately qualified future scientists and workers in STEM industries and ensure a high level of scientific literacy in society. It is a crucial read for all training and practicing science teachers, education researchers and academics, as well as anyone invested in the desire to help fulfil young people’s science aspirations.




Ambitious Science Teaching


Book Description

2018 Outstanding Academic Title, Choice Ambitious Science Teaching outlines a powerful framework for science teaching to ensure that instruction is rigorous and equitable for students from all backgrounds. The practices presented in the book are being used in schools and districts that seek to improve science teaching at scale, and a wide range of science subjects and grade levels are represented. The book is organized around four sets of core teaching practices: planning for engagement with big ideas; eliciting student thinking; supporting changes in students’ thinking; and drawing together evidence-based explanations. Discussion of each practice includes tools and routines that teachers can use to support students’ participation, transcripts of actual student-teacher dialogue and descriptions of teachers’ thinking as it unfolds, and examples of student work. The book also provides explicit guidance for “opportunity to learn” strategies that can help scaffold the participation of diverse students. Since the success of these practices depends so heavily on discourse among students, Ambitious Science Teaching includes chapters on productive classroom talk. Science-specific skills such as modeling and scientific argument are also covered. Drawing on the emerging research on core teaching practices and their extensive work with preservice and in-service teachers, Ambitious Science Teaching presents a coherent and aligned set of resources for educators striving to meet the considerable challenges that have been set for them.