Performance and Reliability Analysis of Computer Systems


Book Description

Performance and Reliability Analysis of Computer Systems: An Example-Based Approach Using the SHARPE Software Package provides a variety of probabilistic, discrete-state models used to assess the reliability and performance of computer and communication systems. The models included are combinatorial reliability models (reliability block diagrams, fault trees and reliability graphs), directed, acyclic task precedence graphs, Markov and semi-Markov models (including Markov reward models), product-form queueing networks and generalized stochastic Petri nets. A practical approach to system modeling is followed; all of the examples described are solved and analyzed using the SHARPE tool. In structuring the book, the authors have been careful to provide the reader with a methodological approach to analytical modeling techniques. These techniques are not seen as alternatives but rather as an integral part of a single process of assessment which, by hierarchically combining results from different kinds of models, makes it possible to use state-space methods for those parts of a system that require them and non-state-space methods for the more well-behaved parts of the system. The SHARPE (Symbolic Hierarchical Automated Reliability and Performance Evaluator) package is the `toolchest' that allows the authors to specify stochastic models easily and solve them quickly, adopting model hierarchies and very efficient solution techniques. All the models described in the book are specified and solved using the SHARPE language; its syntax is described and the source code of almost all the examples discussed is provided. Audience: Suitable for use in advanced level courses covering reliability and performance of computer and communications systems and by researchers and practicing engineers whose work involves modeling of system performance and reliability.




Advances in System Reliability Engineering


Book Description

Recent Advances in System Reliability Engineering describes and evaluates the latest tools, techniques, strategies, and methods in this topic for a variety of applications. Special emphasis is put on simulation and modelling technology which is growing in influence in industry, and presents challenges as well as opportunities to reliability and systems engineers. Several manufacturing engineering applications are addressed, making this a particularly valuable reference for readers in that sector. - Contains comprehensive discussions on state-of-the-art tools, techniques, and strategies from industry - Connects the latest academic research to applications in industry including system reliability, safety assessment, and preventive maintenance - Gives an in-depth analysis of the benefits and applications of modelling and simulation to reliability




Reliability and Availability Engineering


Book Description

Learn about the techniques used for evaluating the reliability and availability of engineered systems with this comprehensive guide.




Computer Performance Evaluation. Modelling Techniques and Tools


Book Description

This book constitutes the refereed proceedings of the 11th International Conference on Modelling Tools and Techniques for Computer Communication System Performance Evaluation, TOOLS 2000, held in Schaumburg, IL, USA in March 2000. The 21 revised full papers presented were carefully reviewed and selected from a total of 49 submissions. Also included are 15 tool descriptions and one invited paper. The papers are organized in topical sections on queueing network models, optimization in mobile networks, stochastic Petri nets, simulation, formal methods and performance evaluation, and measurement tools and applications.




MMB & PGTS 2004


Book Description




Reliability and Availability Engineering


Book Description

Do you need to know what technique to use to evaluate the reliability of an engineered system? This self-contained guide provides comprehensive coverage of all the analytical and modeling techniques currently in use, from classical non-state and state space approaches, to newer and more advanced methods such as binary decision diagrams, dynamic fault trees, Bayesian belief networks, stochastic Petri nets, non-homogeneous Markov chains, semi-Markov processes, and phase type expansions. Readers will quickly understand the relative pros and cons of each technique, as well as how to combine different models together to address complex, real-world modeling scenarios. Numerous examples, case studies and problems provided throughout help readers put knowledge into practice, and a solutions manual and Powerpoint slides for instructors accompany the book online. This is the ideal self-study guide for students, researchers and practitioners in engineering and computer science.




Probability and Statistics with Reliability, Queuing, and Computer Science Applications


Book Description

An accessible introduction to probability, stochastic processes, and statistics for computer science and engineering applications Second edition now also available in Paperback. This updated and revised edition of the popular classic first edition relates fundamental concepts in probability and statistics to the computer sciences and engineering. The author uses Markov chains and other statistical tools to illustrate processes in reliability of computer systems and networks, fault tolerance, and performance. This edition features an entirely new section on stochastic Petri nets—as well as new sections on system availability modeling, wireless system modeling, numerical solution techniques for Markov chains, and software reliability modeling, among other subjects. Extensive revisions take new developments in solution techniques and applications into account and bring this work totally up to date. It includes more than 200 worked examples and self-study exercises for each section. Probability and Statistics with Reliability, Queuing and Computer Science Applications, Second Edition offers a comprehensive introduction to probability, stochastic processes, and statistics for students of computer science, electrical and computer engineering, and applied mathematics. Its wealth of practical examples and up-to-date information makes it an excellent resource for practitioners as well. An Instructor's Manual presenting detailed solutions to all the problems in the book is available from the Wiley editorial department.




System Reliability Management


Book Description

This book provides the latest research advances in the field of system reliability assurance and engineering. It contains reference material for applications of reliability in system engineering, offering a theoretical sound background with adequate numerical illustrations. Included are concepts pertaining to reliability analysis, assurance techniques and methodologies, tools, and practical applications of system reliability modeling and allocation. The collection discusses various soft computing techniques like artificial intelligence and particle swarm optimization approach for reliability assessment. Importance of differentiating between the optimal release time and testing stop time of the software has been explicitly discussed and presented in the book. Features: Creates understanding of the costs associated with complex systems Covers reliability measurement of engineering systems Incorporates an efficient effort-based expenditure policy incorporating cost and reliability criteria Provides information for optimal testing stop and release time of software system Presents software performance and security layout Addresses reliability prediction and its maintenance through advanced analytics techniques Overall, System Reliability Management: Solutions and Techniques is a collaborative and interdisciplinary approach for better communication of problems and solutions to increase the performance of the system for better utilization and resource management.




Handbook of Performability Engineering


Book Description

Dependability and cost effectiveness are primarily seen as instruments for conducting international trade in the free market environment. These factors cannot be considered in isolation of each other. This handbook considers all aspects of performability engineering. The book provides a holistic view of the entire life cycle of activities of the product, along with the associated cost of environmental preservation at each stage, while maximizing the performance.




Systems Reliability Assessment


Book Description

This book presents models and methods for systems reliability assessment, human reliability analysis and uncertainty management. It includes fourteen contributions which are grouped into three sections. Section 1 deals with basic reliability methods and applications. The papers by Saiz de Bustamante and Perlado introduce the stochastic processes and the Monte Carlo method, respectively. Sanz Fermandez de Cordoba and Gonzales discuss important practical implications of the use of reliability methods. The former refers to the aerospace industry. The latter considers nuclear power plants. Session 2 presents some advances in systems reliability techniques. The paper by Contini and Poucet illustrates the mathematical analysis of fault trees and event trees. It includes a discussion on the logical analysis of non-coherent fault trees and considerations on the major measures of criticality and importance of a component. The paper by Babbio is devoted to Petri nets. First, the formalism of this relatively new technique is given. Then, stochastic Petri nets are introduced as a tool to describe the behaviour of systems in time. Finally, by some fully developed examples, it is shown how this approach can be used to represent and evaluate complex stochastic systems. Limnios introduces the notion of failure delay systems and gives the lifetime structure for the evaluation of reliability measures. A reservoir is studied as an example of a failure delay system.