High-Rise Buildings under Multi-Hazard Environment


Book Description

This book discusses performance-based seismic and wind-resistant design for high-rise building structures, with a particular focus on establishing an integrated approach for performance-based wind engineering, which is currently less advanced than seismic engineering. This book also provides a state-of-the-art review of numerous methodologies, including computational fluid dynamics (CFD), extreme value analysis, structural optimization, vibration control, pushover analysis, response spectrum analysis, modal parameter identification for the assessment of the wind-resistant and seismic performance of tall buildings in the design stage and actual tall buildings in use. Several new structural optimization methods, including the augmented optimality criteria method, have been developed and employed in the context of performance-based design. This book is a valuable resource for students, researchers and engineers in the field of civil and structural engineering.




Recommended Seismic Design Criteria for New Steel Moment-Frame Buildings (FEMA 350)


Book Description

This report, FEMA-350 - Recommended Seismic Design Criteria for New Steel Moment-Frame Buildings has been developed by the SAC Joint Venture under contract to the Federal Emergency Management Agency (FEMA) to provide organizations engaged in the development of consensus design standards and building code provisions with recommended criteria for the design and construction of new buildings incorporating moment-resisting steel frame construction to resist the effects of earthquakes. It is one of a series of companion publications addressing the issue of the seismic performance of steel moment-frame buildings. The set of companion publications includes: FEMA-350 - Recommended Seismic Design Criteria for New Steel Moment-Frame Buildings. This publication provides recommended criteria, supplemental to FEMA-302 - 1997 NEHRP Recommended Provisions for Seismic Regulations for New Buildings and Other Structures, for the design and construction of steel moment-frame buildings and provides alternative performance-based design criteria. FEMA-351 - Recommended Seismic Evaluation and Upgrade Criteria for Existing Welded Steel Moment-Frame Buildings. This publication provides recommended methods to evaluate the probable performance of existing steel moment-frame buildings in future earthquakes and to retrofit these buildings for improved performance. FEMA-352 - Recommended Postearthquake Evaluation and Repair Criteria for Welded Steel Moment-Frame Buildings. This publication provides recommendations for performing postearthquake inspections to detect damage in steel moment-frame buildings following an earthquake, evaluating the damaged buildings to determine their safety in the postearthquake environment, and repairing damaged buildings. FEMA-353 - Recommended Specifications and Quality Assurance Guidelines for Steel Moment-Frame Construction for Seismic Applications. This publication provides recommended specifications for the fabrication and erection of steel moment frames for seismic applications. The recommended design criteria contained in the other companion documents are based on the material and workmanship standards contained in this document, which also includes discussion of the basis for the quality control and quality assurance criteria contained in the recommended specifications. The information contained in these recommended design criteria, hereinafter referred to as Recommended Criteria, is presented in the form of specific design and performance evaluation procedures together with supporting commentary explaining part of the basis for these recommendations.




Engineering Journal


Book Description




Design and Performance of Tall Buildings for Wind


Book Description

Design and Performance of Tall Buildings for Wind, MOP 143, provides a framework for the design of tall buildings for wind, based on the current state-of-practice in tall building structural design and wind tunnel testing.




Designing Tall Buildings


Book Description

The first of its kind, Designing Tall Buildings is an accessible reference that guides you through the fundamental principles of designing high-rises. Each chapter focuses on one theme central to tall-building design, giving you a comprehensive overview of the related architecture and structural engineering concepts. Mark P. Sarkisian provides clear definitions of technical terms and introduces important equations, to help you gradually develop your knowledge. Later chapters allow you to explore more complex applications, such as biomimicry. Projects drawn from Skidmore, Owings and Merrill’s vast catalog of built high-rises, many of which Sarkisian designed, demonstrate these concepts. This book advises you to consider the influence of a particular site’s geology, wind conditions, and seismicity. Using this contextual knowledge and analysis, you can determine what types of structural solutions are best suited for a tower on that site. You can then conceptualize and devise efficient structural systems that are not only safe, but also constructible and economical. Sarkisian also addresses the influence of nature in design, urging you to integrate structure and architecture for buildings of superior performance, sustainability, and aesthetic excellence.




Design of Buildings for Wind


Book Description

ASCE 7 is the US standard for identifying minimum design loads for buildings and other structures. ASCE 7 covers many load types, of which wind is one. The purpose of this book is to provide structural and architectural engineers with the practical state-of-the-art knowledge and tools needed for designing and retrofitting buildings for wind loads. The book will also cover wind-induced loss estimation. This new edition include a guide to the thoroughly revised, 2010 version of the ASCE 7 Standard provisions for wind loads; incorporate major advances achieved in recent years in the design of tall buildings for wind; present material on retrofitting and loss estimation; and improve the presentation of the material to increase its usefulness to structural engineers. Key features: New focus on tall buildings helps make the analysis and design guidance easier and less complex. Covers the new simplified design methods of ASCE 7-10, guiding designers to clearly understand the spirit and letter of the provisions and use the design methods with confidence and ease. Includes new coverage of retrofitting for wind load resistance and loss estimation from hurricane winds. Thoroughly revised and updated to conform with current practice and research.




Recent Advances in Optimal Structural Design


Book Description

Sponsored by the Technical Committee on Structural Design of the Technical Administrative Committee on Analysis and Computation of the Technical Activities Division of the Structural Engineering Institute of ASCE. This report documents the dramatic new developments in the field of structural optimization over the last two decades. Changes in both computational techniques and applications can be seen by developments in computational methods and solution algorithms, the role of optimization during the various stages of structural design, and the stochastic nature of design in relation to structural optimization. Topics include: Ømethods for discrete variable structural optimization; Ødecomposition methods in structural optimization; Østate of the art on the use of genetic algorithms in design of steel structures; Øconceptual design optimization of engineering structures; Øtopology and geometry optimization of trusses and frames; Øevolutionary structural optimization; Ødesign and optimization of semi-rigid framed structures; Øoptimized performance-based design for buildings; Ømulti-objective optimum design of seismic-resistant structures; and Øreliability- and cost-oriented optimal bridge maintenance planning. The book concludes with an extensive bibliography of journal papers on structural optimization published between 1987 and 1999.




NBS Special Publication


Book Description




Tall Buildings


Book Description

The structural challenges of building 800 metres into the sky are substantial, and include several factors which do not affect low-rise construction. This book focusses on these areas specifically to provide the architectural and structural knowledge which must be taken into account in order to design tall buildings successfully. In presenting examples of steel, reinforced concrete, and composite structural systems for such buildings, it is shown that wind load has a very important effect on the architectural and structural design. The aerodynamic approach to tall buildings is considered in this context, as is earthquake induced lateral loading. Case studies of some of the world’s most iconic buildings, illustrated with full colour photographs, structural plans and axonometrics, will bring to life the design challenges which they presented to architects and structural engineers. The Empire State Building, the Burj Khalifa, Taipei 101 and the HSB Turning Torso are just a few examples of the buildings whose real-life specifications are used to explain and illustrate core design principles, and their subsequent effect on the finished structure.




Wind Effects on Structures


Book Description

Provides structural engineers with the knowledge and practical tools needed to perform structural designs for wind that incorporate major technological, conceptual, analytical and computational advances achieved in the last two decades. With clear explanations and documentation of the concepts, methods, algorithms, and software available for accounting for wind loads in structural design, it also describes the wind engineer's contributions in sufficient detail that they can be effectively scrutinized by the structural engineer in charge of the design. Wind Effects on Structures: Modern Structural Design for Wind, 4th Edition is organized in four sections. The first covers atmospheric flows, extreme wind speeds, and bluff body aerodynamics. The second examines the design of buildings, and includes chapters on aerodynamic loads; dynamic and effective wind-induced loads; wind effects with specified MRIs; low-rise buildings; tall buildings; and more. The third part is devoted to aeroelastic effects, and covers both fundamentals and applications. The last part considers other structures and special topics such as trussed frameworks; offshore structures; and tornado effects. Offering readers the knowledge and practical tools needed to develop structural designs for wind loadings, this book: Points out significant limitations in the design of buildings based on such techniques as the high-frequency force balance Discusses powerful algorithms, tools, and software needed for the effective design for wind, and provides numerous examples of application Discusses techniques applicable to structures other than buildings, including stacks and suspended-span bridges Features several appendices on Elements of Probability and Statistics; Peaks-over-Threshold Poisson-Process Procedure for Estimating Peaks; estimates of the WTC Towers’ Response to Wind and their shortcomings; and more Wind Effects on Structures: Modern Structural Design for Wind, 4th Edition is an excellent text for structural engineers, wind engineers, and structural engineering students and faculty.