Fault-Diagnosis Systems


Book Description

With increasing demands for efficiency and product quality plus progress in the integration of automatic control systems in high-cost mechatronic and safety-critical processes, the field of supervision (or monitoring), fault detection and fault diagnosis plays an important role. The book gives an introduction into advanced methods of fault detection and diagnosis (FDD). After definitions of important terms, it considers the reliability, availability, safety and systems integrity of technical processes. Then fault-detection methods for single signals without models such as limit and trend checking and with harmonic and stochastic models, such as Fourier analysis, correlation and wavelets are treated. This is followed by fault detection with process models using the relationships between signals such as parameter estimation, parity equations, observers and principal component analysis. The treated fault-diagnosis methods include classification methods from Bayes classification to neural networks with decision trees and inference methods from approximate reasoning with fuzzy logic to hybrid fuzzy-neuro systems. Several practical examples for fault detection and diagnosis of DC motor drives, a centrifugal pump, automotive suspension and tire demonstrate applications.







Advanced methods for fault diagnosis and fault-tolerant control


Book Description

The major objective of this book is to introduce advanced design and (online) optimization methods for fault diagnosis and fault-tolerant control from different aspects. Under the aspect of system types, fault diagnosis and fault-tolerant issues are dealt with for linear time-invariant and time-varying systems as well as for nonlinear and distributed (including networked) systems. From the methodological point of view, both model-based and data-driven schemes are investigated.To allow for a self-contained study and enable an easy implementation in real applications, the necessary knowledge as well as tools in mathematics and control theory are included in this book. The main results with the fault diagnosis and fault-tolerant schemes are presented in form of algorithms and demonstrated by means of benchmark case studies. The intended audience of this book are process and control engineers, engineering students and researchers with control engineering background.




Fault Detection and Diagnosis in Industrial Systems


Book Description

Early and accurate fault detection and diagnosis for modern chemical plants can minimize downtime, increase the safety of plant operations, and reduce manufacturing costs. This book presents the theoretical background and practical techniques for data-driven process monitoring. It demonstrates the application of all the data-driven process monitoring techniques to the Tennessee Eastman plant simulator, and looks at the strengths and weaknesses of each approach in detail. A plant simulator and problems allow readers to apply process monitoring techniques.




Real Time Fault Monitoring of Industrial Processes


Book Description

This book presents a detailed and up-to-date exposition of fault monitoring methods in industrial processes and structures. The following approaches are explained in considerable detail: Model-based methods (simple tests, analytical redundancy, parameter estimation); knowledge-based methods; artificial neural network methods; and nondestructive testing, etc. Each approach is complemented by specific case studies from various industrial sectors (aerospace, chemical, nuclear, etc.), thus bridging theory and practice. This volume will be a valuable tool in the hands of professional and academic engineers. It can also be recommended as a supplementary postgraduate textbook. For scientists whose work involves automatic process control and supervision, statistical process control, applied statistics, quality control, computer-assisted predictive maintenance and plant monitoring, and structural reliability and safety.




Fault-Tolerant Process Control


Book Description

Fault-Tolerant Process Control focuses on the development of general, yet practical, methods for the design of advanced fault-tolerant control systems; these ensure an efficient fault detection and a timely response to enhance fault recovery, prevent faults from propagating or developing into total failures, and reduce the risk of safety hazards. To this end, methods are presented for the design of advanced fault-tolerant control systems for chemical processes which explicitly deal with actuator/controller failures and sensor faults and data losses. Specifically, the book puts forward: · A framework for detection, isolation and diagnosis of actuator and sensor faults for nonlinear systems; · Controller reconfiguration and safe-parking-based fault-handling methodologies; · Integrated-data- and model-based fault-detection and isolation and fault-tolerant control methods; · Methods for handling sensor faults and data losses; and · Methods for monitoring the performance of low-level PID loops. The methodologies proposed employ nonlinear systems analysis, Lyapunov techniques, optimization, statistical methods and hybrid systems theory and are predicated upon the idea of integrating fault-detection, local feedback control, and supervisory control. The applicability and performance of the methods are demonstrated through a number of chemical process examples. Fault-Tolerant Process Control is a valuable resource for academic researchers, industrial practitioners as well as graduate students pursuing research in this area.




Active Fault Tolerant Control Systems


Book Description

Modern technological systems rely on sophisticated control functions to meet increased performance requirements. For such systems, Fault Tolerant Control Systems (FTCS) need to be developed. Active FTCS are dependent on a Fault Detection and Identification (FDI) process to monitor system performance and to detect and isolate faults in the systems. The main objective of this book is to study and to validate some important issues in real-time Active FTCS by means of theoretical analysis and simulation. Several models are presented to achieve this objective, taking into consideration practical aspects of the system to be controlled, performance deterioration in FDI algorithms, and limitations in reconfigurable control laws.




Fault Detection and Diagnosis in Industrial Systems


Book Description

Early and accurate fault detection and diagnosis for modern chemical plants can minimize downtime, increase the safety of plant operations, and reduce manufacturing costs. This book presents the theoretical background and practical techniques for data-driven process monitoring. It demonstrates the application of all the data-driven process monitoring techniques to the Tennessee Eastman plant simulator, and looks at the strengths and weaknesses of each approach in detail. A plant simulator and problems allow readers to apply process monitoring techniques.