Peridynamic Modeling, Numerical Techniques, and Applications


Book Description

This book provides readers with an incisive look at cutting-edge peridynamic modeling methods, numerical techniques, their applications, and potential future directions for the field. It starts with an introductory chapter authored by Stewart Silling, who originally developed peridynamics. It then looks at new concepts in the field, with chapters covering dual-horizon peridynamics, peridynamics for axisymmetric analysis, beam and plate models in peridynamics, coupled peridynamics and XFEM, peridynamics for dynamic fracture modeling, and more. From there, it segues into coverage of cutting-edge applications of peridynamics, exploring its biological applications, modeling at the nanoscale, peridynamics for composites delamination and damage in ceramics, and more, concluding with a chapter on the application of artificial intelligence and machine learning in peridynamics. Covers modeling methods, numerical techniques, applications, and future directions for the field Discusses techniques such as dual-horizon peridynamics, damage modeling using the phase-field approach, and contact analysis of rigid and deformable bodies with refined non-ordinary state-based peridynamics Looks at a range of different peridynamic applications such as ice modeling, fiber-reinforced composite modeling, modeling at nanoscale, and more




Peridynamic Modeling, Numerical Techniques, and Applications


Book Description

This book provides readers with an incisive look at cutting-edge peridynamic modeling methods, numerical techniques, their applications, and potential future directions for the field. It starts with an introductory chapter authored by Stewart Silling, who originally developed peridynamics. It then looks at new concepts in the field, with chapters covering dual-horizon peridynamics, peridynamics for axisymmetric analysis, beam and plate models in peridynamics, coupled peridynamics and XFEM, peridynamics for dynamic fracture modeling, and more. From there, it segues into coverage of cutting-edge applications of peridynamics, exploring its biological applications, modeling at the nanoscale, peridynamics for composites delamination and damage in ceramics, and more, concluding with a chapter on the application of artificial intelligence and machine learning in peridynamics. - Covers modeling methods, numerical techniques, applications, and future directions for the field - Discusses techniques such as dual-horizon peridynamics, damage modeling using the phase-field approach, and contact analysis of rigid and deformable bodies with refined non-ordinary state-based peridynamics - Looks at a range of different peridynamic applications such as ice modeling, fiber-reinforced composite modeling, modeling at nanoscale, and more




Peridynamic Theory and Its Applications


Book Description

This book presents the peridynamic theory, which provides the capability for improved modeling of progressive failure in materials and structures, and paves the way for addressing multi-physics and multi-scale problems. The book provides students and researchers with a theoretical and practical knowledge of the peridynamic theory and the skills required to analyze engineering problems. The text may be used in courses such as Multi-physics and Multi-scale Analysis, Nonlocal Computational Mechanics, and Computational Damage Prediction. Sample algorithms for the solution of benchmark problems are available so that the reader can modify these algorithms, and develop their own solution algorithms for specific problems. Students and researchers will find this book an essential and invaluable reference on the topic.




Peridynamic Differential Operator for Numerical Analysis


Book Description

This book introduces the peridynamic (PD) differential operator, which enables the nonlocal form of local differentiation. PD is a bridge between differentiation and integration. It provides the computational solution of complex field equations and evaluation of derivatives of smooth or scattered data in the presence of discontinuities. PD also serves as a natural filter to smooth noisy data and to recover missing data. This book starts with an overview of the PD concept, the derivation of the PD differential operator, its numerical implementation for the spatial and temporal derivatives, and the description of sources of error. The applications concern interpolation, regression, and smoothing of data, solutions to nonlinear ordinary differential equations, single- and multi-field partial differential equations and integro-differential equations. It describes the derivation of the weak form of PD Poisson’s and Navier’s equations for direct imposition of essential and natural boundary conditions. It also presents an alternative approach for the PD differential operator based on the least squares minimization. Peridynamic Differential Operator for Numerical Analysis is suitable for both advanced-level student and researchers, demonstrating how to construct solutions to all of the applications. Provided as supplementary material, solution algorithms for a set of selected applications are available for more details in the numerical implementation.




Handbook of Peridynamic Modeling


Book Description

This handbook covers the peridynamic modeling of failure and damage. Peridynamics is a reformulation of continuum mechanics based on integration of interactions rather than spatial differentiation of displacements. The book extends the classical theory of continuum mechanics to allow unguided modeling of crack propagation/fracture in brittle, quasi-brittle, and ductile materials; autonomous transition from continuous damage/fragmentation to fracture; modeling of long-range forces within a continuous body; and multiscale coupling in a consistent mathematical framework.




Advances in Peridynamics


Book Description

This book presents recent improvements in peridynamic modeling of structures. It provides sufficient theory and numerical implementation helpful to both new and existing researchers in the field. The main focus of the book is on the non-ordinary state-based (NOSB) peridynamics (PD) and its applications for performing finite deformation. It presents the framework for modeling high stretch polymers, viscoelastic materials, thermoelasticity, plasticity, and creep. It provides a systematic derivation for dimensionally reduced structures such as axisymmetric structures and beams. Also, it presents a novel approach to impose boundary conditions without suffering from displacement kinks near the boundary. Furthermore, it presents refinements to bond-based PD model by including rotation kinematics for modeling isotropic and composite materials. Moreover, it presents a PD – FEM coupling framework in ANSYS based on principle for virtual work. Lastly, it presents an application of neural networks in the peridynamic (PINN) framework. Sample codes are provided for readers to develop hands-on experience on peridynamic modeling. Describes new developments in peridynamics and their applications in the presence of material and geometric nonlinearity; Describes an approach to seamlessly couple PD with FE; Introduces the use of the neural network in the PD framework to solve engineering problems; Provides theory and numerical examples for researchers and students to self-study and apply in their research (Codes are provided as supplementary material); Provides theoretical development and numerical examples suitable for graduate courses.




Nonlocal Modeling, Analysis, and Computation


Book Description

Studies of complexity, singularity, and anomaly using nonlocal continuum models are steadily gaining popularity. This monograph provides an introduction to basic analytical, computational, and modeling issues and to some of the latest developments in these areas. Nonlocal Modeling, Analysis, and Computation includes motivational examples of nonlocal models, basic building blocks of nonlocal vector calculus, elements of theory for well-posedness and nonlocal spaces, connections to and coupling with local models, convergence and compatibility of numerical approximations, and various applications, such as nonlocal dynamics of anomalous diffusion and nonlocal peridynamic models of elasticity and fracture mechanics. A particular focus is on nonlocal systems with a finite range of interaction to illustrate their connection to local partial differential equations and fractional PDEs. These models are designed to represent nonlocal interactions explicitly and to remain valid for complex systems involving possible singular solutions and they have the potential to be alternatives for as well as bridges to existing models. The author discusses ongoing studies of nonlocal models to encourage the discovery of new mathematical theory for nonlocal continuum models and offer new perspectives on traditional models, analytical techniques, and algorithms.




The Finite Element Method and Applications in Engineering Using ANSYS®


Book Description

This textbook offers theoretical and practical knowledge of the finite element method. The book equips readers with the skills required to analyze engineering problems using ANSYS®, a commercially available FEA program. Revised and updated, this new edition presents the most current ANSYS® commands and ANSYS® screen shots, as well as modeling steps for each example problem. This self-contained, introductory text minimizes the need for additional reference material by covering both the fundamental topics in finite element methods and advanced topics concerning modeling and analysis. It focuses on the use of ANSYS® through both the Graphics User Interface (GUI) and the ANSYS® Parametric Design Language (APDL). Extensive examples from a range of engineering disciplines are presented in a straightforward, step-by-step fashion. Key topics include: • An introduction to FEM • Fundamentals and analysis capabilities of ANSYS® • Fundamentals of discretization and approximation functions • Modeling techniques and mesh generation in ANSYS® • Weighted residuals and minimum potential energy • Development of macro files • Linear structural analysis • Heat transfer and moisture diffusion • Nonlinear structural problems • Advanced subjects such as submodeling, substructuring, interaction with external files, and modification of ANSYS®-GUI Electronic supplementary material for using ANSYS® can be found at http://link.springer.com/book/10.1007/978-1-4899-7550-8. This convenient online feature, which includes color figures, screen shots and input files for sample problems, allows for regeneration on the reader’s own computer. Students, researchers, and practitioners alike will find this an essential guide to predicting and simulating the physical behavior of complex engineering systems."




Fatigue Life Prediction of Solder Joints in Electronic Packages with Ansys®


Book Description

Fatigue Life Prediction of Solder Joints in Electronic Packages with ANSYS® describes the method in great detail starting from the theoretical basis. The reader is supplied with an add-on software package to ANSYS® that is designed for solder joint fatigue reliability analysis of electronic packages. Specific steps of the analysis method are discussed through examples without leaving any room for confusion. The add-on package along with the examples make it possible for an engineer with a working knowledge of ANSYS® to perform solder joint reliability analysis. Fatigue Life Prediction of Solder Joints in Electronic Packages with ANSYS® allows the engineers to conduct fatigue reliability analysis of solder joints in electronic packages.




Advances in Applied Mechanics


Book Description

The Advances in Applied Mechanics book series draws together recent significant advances in various topics in applied mechanics. Published since 1948, Advances in Applied Mechanics aims to provide authoritative review articles on topics in the mechanical sciences, primarily of interest to scientists and engineers working in the various branches of mechanics. This content is also relevant to the many who use the results of investigations in mechanics in various application areas, such as aerospace, chemical, civil, environmental, mechanical and nuclear engineering. - Covers all fields of the mechanical sciences - Highlights classical and modern areas of mechanics that are prime for review - Provides comprehensive coverage of applied mechanics for scientists and engineers as well as those in various application areas