Perspectives and Problems in Nonlinear Science


Book Description

Lawrence Sirovich will turn seventy on March 1, 2003. Larry's academic life of over 45 years at the Courant Institute, Brown University, Rockefeller University and the Mount Sinai School of Medicine has touched many peo ple and several disciplines, from fluid dynamics to brain theory. His con tributions to the kinetic theory of gases, methods of applied mathematics, theoretical fluid dynamics, hydrodynamic turbulence, the biophysics of vi sion and the dynamics of neuronal populations, represent the creative work of an outstanding scholar who was stimulated mostly by insatiable curios ity. As a scientist, Larry has consistently offered fresh outlooks on classical and difficult subjects, and moved into new fields effortlessly. He delights in what he knows and does, and sets no artificial boundaries to the range of his inquiry. Among the more than fifty or so Ph. D. students and post docs that he has mentored, many continue to make first-rate contributions themselves and hold academic positions in the US and elsewhere. Larry's scientific collaborators are numerous and distinguished. Those of us who have known him well will agree that Larry's charm, above all, is his taste, wit, and grace under fire. Larry has contributed immensely to mathematics publishing. He be gan his career with Springer by founding the Applied Mathematical Sci ences series together with Fritz John and Joe LaSalle some 30 years ago. Later he co-founded the Texts in Applied Mathematics series and more re cently the Interdisciplinary Applied Mathematics series.




Perspectives of Nonlinear Dynamics: Volume 1


Book Description

The dynamics of physical, chemical, biological, or fluid systems generally must be described by nonlinear models, whose detailed mathematical solutions are not obtainable. To understand some aspects of such dynamics, various complementary methods and viewpoints are of crucial importance. In this book the perspectives generated by analytical, topological and computational methods, and interplays between them, are developed in a variety of contexts. This book is a comprehensive introduction to this field, suited to a broad readership, and reflecting a wide range of applications. Some of the concepts considered are: topological equivalence; embeddings; dimensions and fractals; Poincaré maps and map-dynamics; empirical computational sciences vis-á-vis mathematics; Ulam's synergetics; Turing's instability and dissipative structures; chaos; dynamic entropies; Lorenz and Rossler models; predator-prey and replicator models; FPU and KAM phenomena; solitons and nonsolitons; coupled maps and pattern dynamics; cellular automata.




Introduction to Nonlinear Science


Book Description

The aim of this book is to develop a unified approach to nonlinear science, which does justice to its multiple facets and to the diversity and richness of the concepts and tools developed in this field over the years. Nonlinear science emerged in its present form following a series of closely related and decisive analytic, numerical and experimental developments that took place over the past three decades. It appeals to an extremely large variety of subject areas, but, at the same time, introduces into science a new way of thinking based on a subtle interplay between qualitative and quantitative techniques, topological and metric considerations and deterministic and statistical views. Special effort has been made throughout the book to illustrate both the development of the subject and the mathematical techniques, by reference to simple models. Each chapter concludes with a set of problems. This book will be of great value to graduate students in physics, applied mathematics, chemistry, engineering and biology taking courses in nonlinear science and its applications.




Nonlinear Dynamics and Chaos: Advances and Perspectives


Book Description

This book is a collection of papers contributed by some of the greatest names in the areas of chaos and nonlinear dynamics. Each paper examines a research topic at the frontier of the area of dynamical systems. As well as reviewing recent results, each paper also discusses the future perspectives of each topic. The result is an invaluable snapshot of the state of the ?eld by some of the most important researchers in the area. The ?rst contribution in this book (the section entitled “How did you get into Chaos?”) is actually not a paper, but a collection of personal accounts by a number of participants of the conference held in Aberdeen in September 2007 to honour Celso Grebogi’s 60th birthday. At the instigation of James Yorke, many of the most well-known scientists in the area agreed to share their tales on how they got involved in chaos during a celebratory dinner in Celso’s honour during the conference. This was recorded in video, we felt that these accounts were a valuable historic document for the ?eld. So we decided to transcribe it and include it here as the ?rst section of the book.




Visions of Nonlinear Science in the 21st Century


Book Description

Authoritative and visionary, this festschrift features 12 highly readable expositions of virtually all currently active aspects of nonlinear science. It has been painstakingly researched and written by leading scientists and eminent expositors, including L Shilnikov, R Seydel, I Prigogine, W Porod, C Mira, M Lakshmanan, W Lauterborn, A Holden, H Haken, C Grebogi, E Doedel and L Chua; each chapter addresses a current and intensively researched area of nonlinear science and chaos, including nonlinear dynamics, mathematics, numerics and technology. Handsomely produced with high resolution color graphics for enhanced readability, this book has been carefully written at a high level of exposition and is somewhat self-contained. Each chapter includes a tutorial and background information, as well as a survey of each area's main results and state of the art. Of special interest to both beginners and seasoned researchers is the identification of future trends and challenging yet tractable problems thatare likely,to be solved before the end of the 21st century. The visionary and provocative nature of this book makes it a valuable and lasting reference.




Nonlinear Dynamics and Chaos


Book Description

This textbook is aimed at newcomers to nonlinear dynamics and chaos, especially students taking a first course in the subject. The presentation stresses analytical methods, concrete examples, and geometric intuition. The theory is developed systematically, starting with first-order differential equations and their bifurcations, followed by phase plane analysis, limit cycles and their bifurcations, and culminating with the Lorenz equations, chaos, iterated maps, period doubling, renormalization, fractals, and strange attractors.







A Nonlinear Dynamics Perspective of Wolfram's New Kind of Science


Book Description

When not immersed in science, he relaxes by searching for Wagner's leitmotifs, musing over Kandinsky's chaos, and contemplating Wittgenstein's inner thoughts.This penultimate volume contains numerous original, elegant, and surprising results in 1-dimensional cellular automata. Perhaps the most exciting, if not shocking, new result is the discovery that only 82 local rules, out of 256, suffice to predict the time evolution of any of the remaining 174 local rules from an arbitrary initial bit-string configuration. This is contrary to the well-known folklore that 256 local rules are necessary, leading to the new concept of quasi-global equivalence.Another surprising result is the introduction of a simple, yet explicit, infinite bit string called the super string S, which contains all random bit strings of finite length as sub-strings. As an illustration of the mathematical subtlety of this amazing discrete testing signal, the super string S is used to prove mathematically, in a trivial and transparent way, that rule 170 is as chaotic as a coin toss.Yet another unexpected new result, among many others, is the derivation of an explicit basin tree generation formula which provides an analytical relationship between the basin trees of globally-equivalent local rules. This formula allows the symbolic, rather than numerical, generation of the time evolution of any local rule corresponding to any initial bit-string configuration, from one of the 88 globally-equivalent local rules.But perhaps the most provocative idea is the proposal for adopting rule 137, over its three globally-equivalent siblings, including the heretofore more well-known rule 110, as the prototypical universal Turing machine.