Perspectives in Ring Theory


Book Description

This proceedings is composed of the papers resulting from the NATO work-shop "Perspectives in Ring Theory" and the work-shop "Geometry and Invariant The ory of Representations of Quivers" . Three reports on problem sessions have been induced in the part corresponding to the work-shop where they belonged. One more report on a problem session, the "lost" problem session, will be published elsewhere eventually. vii Acknowledgement The meeting became possible by the financial support of the Scientific Affairs Division of NATO. The people at this division have been very helpful in the orga nization of the meeting, in particular we commemorate Dr. Mario di Lullo, who died unexpectedly last year, but who has been very helpful with the organization of earlier meetings in Ring Theory. For additional financial support we thank the national foundation for scientific research (NFWO), the rector of the University of Antwerp, UIA, and the Belgian Ministry of Education. We also gladly acknowledge support from the Belgian Friends of the Hebrew University and the chairman Prof. P. Van Remoortere who honored Prof. S. Amitsur for his continuous contributions to the mathematical activities at the University of Antwerp. I thank the authors who contributed their paper(s) to this proceedings and the lecturers for their undisposable contributions towards the success of the work-shop. Finally I thank Danielle for allowing me to spoil another holiday period in favor of a congress.




Commutative Algebra


Book Description

Commutative algebra is a rapidly growing subject that is developing in many different directions. This volume presents several of the most recent results from various areas related to both Noetherian and non-Noetherian commutative algebra. This volume contains a collection of invited survey articles by some of the leading experts in the field. The authors of these chapters have been carefully selected for their important contributions to an area of commutative-algebraic research. Some topics presented in the volume include: generalizations of cyclic modules, zero divisor graphs, class semigroups, forcing algebras, syzygy bundles, tight closure, Gorenstein dimensions, tensor products of algebras over fields, as well as many others. This book is intended for researchers and graduate students interested in studying the many topics related to commutative algebra.




Grobner Bases in Ring Theory


Book Description

1. Preliminaries. 1.1. Presenting algebras by relations. 1.2. S-graded algebras and modules. 1.3. [symbol]-filtered algebras and modules -- 2. The [symbol]-leading homogeneous algebra A[symbol]. 2.1. Recognizing A via G[symbol](A): part 1. 2.2. Recognizing A via G[symbol](A): part 2. 2.3. The [symbol-graded isomorphism A[symbol](A). 2.4. Recognizing A via A[symbol] -- 3. Grobner bases: conception and construction. 3.1. Monomial ordering and admissible system. 3.2. Division algorithm and Grobner basis. 3.3. Grobner bases and normal elements. 3.4. Grobner bases w.r.t. skew multiplicative K-bases. 3.5. Grobner bases in K[symbol] and KQ. 3.6. (De)homogenized Grobner bases. 3.7. dh-closed homogeneous Grobner bases -- 4. Grobner basis theory meets PBW theory. 4.1. [symbol]-standard basis [symbol]-PBW isomorphism. 4.2. Realizing [symbol]-PBW isomorphism by Grobner basis. 4.3. Classical PBW K-bases vs Grobner bases. 4.4. Solvable polynomial algebras revisited -- 5. Using A[symbol] in terms of Grobner bases. 5.1. The working strategy. 5.2. Ufnarovski graph. 5.3. Determination of Gelfand-Kirillov Dimension. 5.4. Recognizing Noetherianity. 5.5. Recognizing (semi- )primeness and PI-property. 5.6. Anick's resolution over monomial algebras. 5.7. Recognizing finiteness of global dimension. 5.8. Determination of Hilbert series -- 6. Recognizing (non- )homogeneous p-Koszulity via A[symbol]. 6.1. (Non- )homogeneous p-Koszul algebras. 6.2. Anick's resolution and homogeneous p-Koszulity. 6.3. Working in terms of Grobner bases -- 7. A study of Rees algebra by Grobner bases. 7.1. Defining [symbol] by [symbol]. 7.2. Defining [symbol] by [symbol]. 7.3. Recognizing structural properties of [symbol] via [symbol]. 7.4. An application to regular central extensions. 7.5. Algebras defined by dh-closed homogeneous Grobner bases -- 8. Looking for more Grobner bases. 8.1. Lifting (finite) Grobner bases from O[symbol]. 8.2. Lifting (finite) Grobner bases from a class of algebras. 8.3. New examples of Grobner basis theory. 8.4. Skew 2-nomial algebras. 8.5. Almost skew 2-nomial algebras




The Theory of Rings


Book Description

The book is mainly concerned with the theory of rings in which both maximal and minimal conditions hold for ideals (except in the last chapter, where rings of the type of a maximal order in an algebra are considered). The central idea consists of representing rings as rings of endomorphisms of an additive group, which can be achieved by means of the regular representation.




Foundations of Applied Mathematics, Volume I


Book Description

This book provides the essential foundations of both linear and nonlinear analysis necessary for understanding and working in twenty-first century applied and computational mathematics. In addition to the standard topics, this text includes several key concepts of modern applied mathematical analysis that should be, but are not typically, included in advanced undergraduate and beginning graduate mathematics curricula. This material is the introductory foundation upon which algorithm analysis, optimization, probability, statistics, differential equations, machine learning, and control theory are built. When used in concert with the free supplemental lab materials, this text teaches students both the theory and the computational practice of modern mathematical analysis. Foundations of Applied Mathematics, Volume 1: Mathematical Analysis includes several key topics not usually treated in courses at this level, such as uniform contraction mappings, the continuous linear extension theorem, Daniell?Lebesgue integration, resolvents, spectral resolution theory, and pseudospectra. Ideas are developed in a mathematically rigorous way and students are provided with powerful tools and beautiful ideas that yield a number of nice proofs, all of which contribute to a deep understanding of advanced analysis and linear algebra. Carefully thought out exercises and examples are built on each other to reinforce and retain concepts and ideas and to achieve greater depth. Associated lab materials are available that expose students to applications and numerical computation and reinforce the theoretical ideas taught in the text. The text and labs combine to make students technically proficient and to answer the age-old question, "When am I going to use this?




Model Theory : An Introduction


Book Description

Assumes only a familiarity with algebra at the beginning graduate level; Stresses applications to algebra; Illustrates several of the ways Model Theory can be a useful tool in analyzing classical mathematical structures




Polytopes, Rings, and K-Theory


Book Description

This book examines interactions of polyhedral discrete geometry and algebra. What makes this book unique is the presentation of several central results in all three areas of the exposition - from discrete geometry, to commutative algebra, and K-theory.




Representation Theory


Book Description

Introducing the representation theory of groups and finite dimensional algebras, first studying basic non-commutative ring theory, this book covers the necessary background on elementary homological algebra and representations of groups up to block theory. It further discusses vertices, defect groups, Green and Brauer correspondences and Clifford theory. Whenever possible the statements are presented in a general setting for more general algebras, such as symmetric finite dimensional algebras over a field. Then, abelian and derived categories are introduced in detail and are used to explain stable module categories, as well as derived categories and their main invariants and links between them. Group theoretical applications of these theories are given – such as the structure of blocks of cyclic defect groups – whenever appropriate. Overall, many methods from the representation theory of algebras are introduced. Representation Theory assumes only the most basic knowledge of linear algebra, groups, rings and fields and guides the reader in the use of categorical equivalences in the representation theory of groups and algebras. As the book is based on lectures, it will be accessible to any graduate student in algebra and can be used for self-study as well as for classroom use.




Elementary Methods in Number Theory


Book Description

This basic introduction to number theory is ideal for those with no previous knowledge of the subject. The main topics of divisibility, congruences, and the distribution of prime numbers are covered. Of particular interest is the inclusion of a proof for one of the most famous results in mathematics, the prime number theorem. With many examples and exercises, and only requiring knowledge of a little calculus and algebra, this book will suit individuals with imagination and interest in following a mathematical argument to its conclusion.




Fundamentals of Number Theory


Book Description

This excellent textbook introduces the basics of number theory, incorporating the language of abstract algebra. A knowledge of such algebraic concepts as group, ring, field, and domain is not assumed, however; all terms are defined and examples are given — making the book self-contained in this respect. The author begins with an introductory chapter on number theory and its early history. Subsequent chapters deal with unique factorization and the GCD, quadratic residues, number-theoretic functions and the distribution of primes, sums of squares, quadratic equations and quadratic fields, diophantine approximation, and more. Included are discussions of topics not always found in introductory texts: factorization and primality of large integers, p-adic numbers, algebraic number fields, Brun's theorem on twin primes, and the transcendence of e, to mention a few. Readers will find a substantial number of well-chosen problems, along with many notes and bibliographical references selected for readability and relevance. Five helpful appendixes — containing such study aids as a factor table, computer-plotted graphs, a table of indices, the Greek alphabet, and a list of symbols — and a bibliography round out this well-written text, which is directed toward undergraduate majors and beginning graduate students in mathematics. No post-calculus prerequisite is assumed. 1977 edition.