Perspectives on the Teaching of Geometry for the 21st Century


Book Description

In recent years geometry seems to have lost large parts of its former central position in mathematics teaching in most countries. However, new trends have begun to counteract this tendency. There is an increasing awareness that geometry plays a key role in mathematics and learning mathematics. Although geometry has been eclipsed in the mathematics curriculum, research in geometry has blossomed as new ideas have arisen from inside mathematics and other disciplines, including computer science. Due to reassessment of the role of geometry, mathematics educators and mathematicians face new challenges. In the present ICMI study, the whole spectrum of teaching and learning of geometry is analysed. Experts from all over the world took part in this study, which was conducted on the basis of recent international research, case studies, and reports on actual school practice. This book will be of particular interest to mathematics educators and mathematicians who are involved in the teaching of geometry at all educational levels, as well as to researchers in mathematics education.




Aspects of Teaching Secondary Mathematics


Book Description

If learners in the classroom are to be excited by mathematics, teachers need to be both well informed about current initiatives and able to see how what is expected of them can be translated into rich and stimulating classroom strategies. The book examines current initiatives that affect teaching mathematics and identifies pointers for action in the classroom. Divided into three major sections, it looks at: the changing mathematics classroom at primary, secondary and tertiary level major components of the secondary curriculum practical pedagogical issues of particular concern to mathematics teachers. Each issue is explores in terms of major underpinnings and research in that area, and practical ideas can be drawn from the text and implemented in the reader's classroom practice. Each chapter has been written by a well-respected writer, researcher and practitioner in their field and all share a common goal: to look thoughtfully and intelligently at some of the practical issues facing mathematics teachers and offer their perspectives on those issues.







Brook Taylor’s Work on Linear Perspective


Book Description

A Study of Taylors Role in the History of Perspective Geometry. Including Facsimiles of Taylors̀ Two Books on Perspective.




Approaches to Algebra


Book Description

In Greek geometry, there is an arithmetic of magnitudes in which, in terms of numbers, only integers are involved. This theory of measure is limited to exact measure. Operations on magnitudes cannot be actually numerically calculated, except if those magnitudes are exactly measured by a certain unit. The theory of proportions does not have access to such operations. It cannot be seen as an "arithmetic" of ratios. Even if Euclidean geometry is done in a highly theoretical context, its axioms are essentially semantic. This is contrary to Mahoney's second characteristic. This cannot be said of the theory of proportions, which is less semantic. Only synthetic proofs are considered rigorous in Greek geometry. Arithmetic reasoning is also synthetic, going from the known to the unknown. Finally, analysis is an approach to geometrical problems that has some algebraic characteristics and involves a method for solving problems that is different from the arithmetical approach. 3. GEOMETRIC PROOFS OF ALGEBRAIC RULES Until the second half of the 19th century, Euclid's Elements was considered a model of a mathematical theory. This may be one reason why geometry was used by algebraists as a tool to demonstrate the accuracy of rules otherwise given as numerical algorithms. It may also be that geometry was one way to represent general reasoning without involving specific magnitudes. To go a bit deeper into this, here are three geometric proofs of algebraic rules, the frrst by Al-Khwarizmi, the other two by Cardano.




Proceedings of the 13th International Congress on Mathematical Education


Book Description

This book is open access under a CC BY 4.0 license. The book presents the Proceedings of the 13th International Congress on Mathematical Education (ICME-13) and is based on the presentations given at the 13th International Congress on Mathematical Education (ICME-13). ICME-13 took place from 24th- 31st July 2016 at the University of Hamburg in Hamburg (Germany). The congress was hosted by the Society of Didactics of Mathematics (Gesellschaft für Didaktik der Mathematik - GDM) and took place under the auspices of the International Commission on Mathematical Instruction (ICMI). ICME-13 brought together about 3.500 mathematics educators from 105 countries, additionally 250 teachers from German speaking countries met for specific activities. Directly before the congress activities were offered for 450 Early Career Researchers. The proceedings give a comprehensive overview on the current state-of-the-art of the discussions on mathematics education and display the breadth and deepness of current research on mathematical teaching-and-learning processes. The book introduces the major activities of ICME-13, namely articles from the four plenary lecturers and two plenary panels, articles from the five ICMI awardees, reports from six national presentations, three reports from the thematic afternoon devoted to specific features of ICME-13. Furthermore, the proceedings contain descriptions of the 54 Topic Study Groups, which formed the heart of the congress and reports from 29 Discussion Groups and 31 Workshops. The additional important activities of ICME-13, namely papers from the invited lecturers, will be presented in the second volume of the proceedings.




A Mathematical Space Odyssey


Book Description

Solid geometry is the traditional name for what we call today the geometry of three-dimensional Euclidean space. This book presents techniques for proving a variety of geometric results in three dimensions. Special attention is given to prisms, pyramids, platonic solids, cones, cylinders and spheres, as well as many new and classical results. A chapter is devoted to each of the following basic techniques for exploring space and proving theorems: enumeration, representation, dissection, plane sections, intersection, iteration, motion, projection, and folding and unfolding. The book includes a selection of Challenges for each chapter with solutions, references and a complete index. The text is aimed at secondary school and college and university teachers as an introduction to solid geometry, as a supplement in problem solving sessions, as enrichment material in a course on proofs and mathematical reasoning, or in a mathematics course for liberal arts students.--




Volume 2: Cases and Perspectives


Book Description

(Published in Co-operation with the National Council of Teacher of Mathematics) According to NCTM's Principles and Standards for School Mathematics, "Technology is essential in teaching and learning of mathematics; it influences the mathematics that is taught and it enhances students' learning." How does research inform this clarion call for technology in mathematics teaching and learning? In response to the need to craft appropriate roles for technology in school mathematics new technological approaches have been applied to the teaching and learning of mathematics, and these approaches have been examined by researchers world-wide. The second volume has a dual focus: cases and perspectives. It features descriptive cases that provide accounts of the development of technology-intensive curriculum and tools. In these cases the writers describe and analyze various roles that research played in their development work and ways in which research, curriculum development, and tool development can inform each other. These thoughtful descriptions and analyses provide documentation of how this process can and does occur. The remaining chapters in the second volume address research related issues and perspectives on the use of technology in the teaching and learning of mathematics. The lessons learned from the research presented in these volumes are lessons about teaching and learning that can be applied more broadly than solely in technological settings.




Visual-spatial Ability in STEM Education


Book Description

Each chapter in this book makes a unique contribution to the body of the literature and enhances the understanding of spatial ability and its influence on learning in the STEM disciplines. It addresses spatial abilities, ways to measure them as well as their impact and how they can affect learning subjects in scientific, technology and engineering domains. The volume deliberately covers a wide range perspectives from cognitive psychology, educational psychology, science, technology, engineering and mathematics, computer science, information technology disciplines to human development. Taking a broad view on the topic, chapters in the book discuss how to define spatial ability and its factors, the measurement of spatial ability and psychometric analyses, and educational strategies to improve spatial skills and their implications for science and technology education. The book thus provides an overview of current thinking about visual-spatial ability, spatial reasoning, and spatial skills.