Perturbation Bounds for Matrix Eigenvalues


Book Description

For the SIAM Classics edition, the author has added over 60 pages of material covering recent results and discussing the important advances made in the last two decades. It is an excellent research reference for all those interested in operator theory, linear algebra, and numerical analysis.




Numerical Methods for Large Eigenvalue Problems


Book Description

This revised edition discusses numerical methods for computing eigenvalues and eigenvectors of large sparse matrices. It provides an in-depth view of the numerical methods that are applicable for solving matrix eigenvalue problems that arise in various engineering and scientific applications. Each chapter was updated by shortening or deleting outdated topics, adding topics of more recent interest, and adapting the Notes and References section. Significant changes have been made to Chapters 6 through 8, which describe algorithms and their implementations and now include topics such as the implicit restart techniques, the Jacobi-Davidson method, and automatic multilevel substructuring.







The Theory of Matrices in Numerical Analysis


Book Description

This text presents selected aspects of matrix theory that are most useful in developing computational methods for solving linear equations and finding characteristic roots. Topics include norms, bounds and convergence; localization theorems; more. 1964 edition.




Matrix Perturbation Theory


Book Description

This book is a comprehensive survey of matrix perturbation theory, a topic of interest to numerical analysts, statisticians, physical scientists, and engineers. In particular, the authors cover perturbation theory of linear systems and least square problems, the eignevalue problem, and the generalized eignevalue problem as wellas a complete treatment of vector and matrix norms, including the theory of unitary invariant norms.







Matrix Analysis


Book Description

This book presents a substantial part of matrix analysis that is functional analytic in spirit. Topics covered include the theory of majorization, variational principles for eigenvalues, operator monotone and convex functions, and perturbation of matrix functions and matrix inequalities. The book offers several powerful methods and techniques of wide applicability, and it discusses connections with other areas of mathematics.




Numerical Methods for General and Structured Eigenvalue Problems


Book Description

This book is about computing eigenvalues, eigenvectors, and invariant subspaces of matrices. Treatment includes generalized and structured eigenvalue problems and all vital aspects of eigenvalue computations. A unique feature is the detailed treatment of structured eigenvalue problems, providing insight on accuracy and efficiency gains to be expected from algorithms that take the structure of a matrix into account.




Inverse Eigenvalue Problems


Book Description

Inverse eigenvalue problems arise in a remarkable variety of applications and associated with any inverse eigenvalue problem are two fundamental questions--the theoretical issue of solvability and the practical issue of computability. Both questions are difficult and challenging. In this text, the authors discuss the fundamental questions, some known results, many applications, mathematical properties, a variety of numerical techniques, as well as several open problems.This is the first book in the authoritative Numerical Mathematics and Scientific Computation series to cover numerical linear algebra, a broad area of numerical analysis. Authored by two world-renowned researchers, the book is aimed at graduates and researchers in applied mathematics, engineering and computer science and makes an ideal graduate text.




A Dynamical Approach to Random Matrix Theory


Book Description

A co-publication of the AMS and the Courant Institute of Mathematical Sciences at New York University This book is a concise and self-contained introduction of recent techniques to prove local spectral universality for large random matrices. Random matrix theory is a fast expanding research area, and this book mainly focuses on the methods that the authors participated in developing over the past few years. Many other interesting topics are not included, and neither are several new developments within the framework of these methods. The authors have chosen instead to present key concepts that they believe are the core of these methods and should be relevant for future applications. They keep technicalities to a minimum to make the book accessible to graduate students. With this in mind, they include in this book the basic notions and tools for high-dimensional analysis, such as large deviation, entropy, Dirichlet form, and the logarithmic Sobolev inequality. This manuscript has been developed and continuously improved over the last five years. The authors have taught this material in several regular graduate courses at Harvard, Munich, and Vienna, in addition to various summer schools and short courses. Titles in this series are co-published with the Courant Institute of Mathematical Sciences at New York University.