Pervaporation, Vapour Permeation and Membrane Distillation


Book Description

Vapour permeation and membrane distillation are two emerging membrane technologies for the production of vapour as permeate, which, in addition to well-established pervaporation technology, are of increasing interest to academia and industry. As efficient separation and concentration processes, they have high potential for use in the energy, water, chemical, food and pharmaceutical sectors. Part One begins by covering the fundamentals, preparation and characterization of pervaporation, before going on to outline the associated systems and applications. State of the art uses, future trends and next generation pervaporation are then discussed. Part Two then explores the preparation, characterization, systems and applications of membranes for vapour permeation, followed by modelling and the new generation of vapour permeation membranes. Finally, Part Three outlines the fundamentals of membrane distillation and its applications in integrated systems, before the book concludes with a view of the next generation. Explores three emerging membrane technologies that produce vapour as a permeate. Looks at the fundamentals, applications, state of the art uses and next generation of each technology. Provides an authoritative guide for chemical engineers and academic researchers interested in membrane technologies for desalination, process water/steam treatment, water purification, VOCs removal and other aspects of pollution control, industrial process chemistry, renewable energy production or separation and concentration in the food/pharmaceutical industries.




Polymer Nanocomposite Membranes for Pervaporation


Book Description

Polymer Nanocomposite Membranes for Pervaporation assesses recent applications in the pervaporation performance of polymer nanocomposites of different length scales. The book discusses the effects of a range of nanofillers, their dispersion, the effect of different polymers, and organic and inorganic nanomaterials in the pervaporation process. In addition, the book explores how the different properties of a variety of nanocomposite materials make them better for use in different types of liquids, while also discussing the challenges of using different nanocomposites for this purpose effectively and safely. In particular, polymer nanocomposites for g nanoscale dispersion, filler/polymer interactions, and morphology are addressed. This is an important reference source for materials scientists, chemical engineers and environmental engineers who want to learn more about how polymer nanocomposites are being used to make the pervaporation separation process more effective. Explores the progress that has been made in recent years in using polymer nanocomposites to enhance the pervaporation separation process Discusses the different properties of a variety of nanocomposite classes, assessing which situations they should best be used in Outlines major challenges in safely and effectively using polymer nanocomposites in the pervaporation separation process




Pervaporation


Book Description

Pervaporation is a separation process in which the selective permeation of components of a liquid mixture is achieved by way of a chemical potential gradient through a non-porous membrane. In Pervaporation: Process, Materials and Applications, the fundamentals and applications of pervaporation are described as a promising technique for the recovery of flavor compounds from dilute aqueous solutions, separation of azeotropic mixtures and for the dehydration of organic solvents. This collection also describes history of pervaporation in an effort to outline the differences between this and other membrane separation technologies including dialysis, ultrafiltration, microfiltration, nanofiltration and reverse osmosis. The closing chapter focuses on the authors on-going development of high performance bio-based cellulosic membranes for ethyl tert-butyl ether purification by pervaporation. Cellulose acetate is extremely selective for ethanol removal from ethyl tert-butyl ether, however its flux is very low. Different strategies for improving its flux while maintaining a high selectivity are described and the main relationships between membrane structure, morphology and properties are illustrated.




Handbook of Membrane Separations


Book Description

The Handbook of Membrane Separations: Chemical, Pharmaceutical, and Biotechnological Applications provides detailed information on membrane separation technologies as they have evolved over the past decades. To provide a basic understanding of membrane technology, this book documents the developments dealing with these technologies. It explores chemical, pharmaceutical, food processing and biotechnological applications of membrane processes ranging from selective separation to solvent and material recovery. This text also presents in-depth knowledge of membrane separation mechanisms, transport models, membrane permeability computations, membrane types and modules, as well as membrane reactors.




Membrane Separations Technology


Book Description

The field of membrane separation technology is presently in a state of rapid growth and innovation. Many different membrane separation processes have been developed during the past half century and new processes are constantly emerging from academic, industrial, and governmental laboratories. While new membrane separation processes are being conceived with remarkable frequency, existing processes are also being constantly improved in order to enhance their economic competitiveness. Significant improvements are currently being made in many aspects of membrane separation technology: in the development of new membrane materials with higher selectivity and/or permeability, in the fabrication methods for high-flux asymmetric or composite membranes, in membrane module construction and in process design. Membrane separation technology is presently being used in an impressive variety of applications and has generated businesses totalling over one billion U.S. dollars annually. The main objective of this book is to present the principles and applications of a variety of membrane separation processes from the unique perspectives of investigators who have made important contributions to their fields. Another objective is to provide the reader with an authoritative resource on various aspects of this rapidly growing technology. The text can be used by someone who wishes to learn about a general area of application as well as by the knowledgeable person seeking more detailed information.




Pervaporation Membrane Separation Processes


Book Description

Hardbound. Covered here are the various aspects of pervaporation: theory and principles, separation characteristics, sorption and diffusion, thermodynamics and evaluation of polymer materials for membranes, as well as plant design and optimization. The book also includes interesting new material on the synthesis of novel copolymer membranes with very high separation potential and future implications for the pervaporation separation of biological systems and its applications in the exciting field of biochemical engineering. Special attention is paid to industrial research and applications of pervaporation membranes and plant operations involving new pervaporation processes.The book also includes a chapter dealing with the development of vapour permeation for industrial applications, which is a new variant of liquid pervaporation processes.




Fundamental Modeling of Membrane Systems


Book Description

Fundamental Modelling of Membrane Systems: Membrane and Process Performance summarizes the state-of-the-art modeling approaches for all significant membrane processes, from molecular transport, to process level, helping researchers and students who carry out experimental research save time and accurately interpret experimental data. The book provides an overview of the different membrane technologies, handling micro-, ultra-, and nanofiltration, reverse and forward osmosis, pervaporation, gas permeation, supported liquid membranes, membrane contactors, membrane bioreactors and ion-exchange membrane systems. Examples of hybrid membrane systems are also included. Presents an accessible reference on how to model membranes and membrane processes Provides a clear, mathematical description of mass transfer in membrane systems Written by well-known, prominent authors in the field of membrane science




Membrane Technology and Applications


Book Description

Table of Contents Preface Acknowledgments for the first edition Acknowledgments for the second edition 1 Overview of Membrane Science and Technology 1 2 Membrane Transport Theory 15 3 Membranes and Modules 89 4 Concentration Polarization 161 5 Reverse Osmosis 191 6 Ultrafiltration 237 7 Microfiltration 275 8 Gas Separation 301 9 Pervaporation 355 10 Ion Exchange Membrane Processes - Electrodialysis 393 11 Carrier Facilitated Transport 425 12 Medical Applications of Membranes 465 13 Other Membrane Processes 491 Appendix 523 Index 535.




Fundamentals of Membrane Separation Technology


Book Description

Fundamentals of Membrane Separation Technology provides a comprehensive and systematic introduction to this environmentally friendly separation process. Using a structured format that promotes comprehension and implementation each chapter provides overviews, principles, materials and preparation, and industrial applications. Each chapter then concludes with future prospects, references, and end of chapter exercises. Written for students and professionals, this book is an ideal reference for those who wish to better understand the fundamentals and applications of membrane technology. Evaluates present and future applications of more recently developed membranes in energy conversion, biomedical components, controlled release devices, and environmental engineering Provides a comprehensive overview of all aspects of membranes and their applications Includes numerous industrial case studies, practical examples, and questions




Membrane Separation of Food Bioactive Ingredients


Book Description

This book covers current developments in membrane-based technologies for the successful recovery of food bioactive ingredients and molecules. Chapters explore emerging technologies, such as microfiltration, ultrafiltration, nanofiltration, and membrane distillation, for the selective concentration and food ingredients from food by-products, as well as techniques, such as pervaporation, for the selective separation and recovery of aroma compounds. The text provides one of the first examinations of other membrane-based technologies, such as liquid membranes (microemulsions), membrane distillation (MD) and pervaporation (PV), as thermal driven membrane processes. The separation of metabolites from microalgae and fermentation broths using membrane technologies is also covered. Researchers in food science, pharmaceutics and biotechnology looking to stay up-to-date on bioactive recovery, as well as membranologists exploring new applications for membrane-based technologies, will find this text a useful resource.