Petrological Constraints on Magma Plumbing Systems Along Mid-ocean Ridges


Book Description

Abstract: Plate spreading at the mid-ocean ridges is accompanied by intrusion of dikes and eruption of lava along the ridge axis. It has been suggested that the depth of magma chambers that feed the flows and dikes is related to the heat flux - the higher the heat flux the shallower the magma chamber. To examine this hypothesis, I determined the depths of magma chambers beneath the intermediate spreading Juan de Fuca Ridge (JdF) in the northeast Pacific and the slow spreading Reykjanes Ridge (RR) south of Iceland. Pressures of partial crystallization were determined by comparing the compositions of natural liquids (glasses) with those of experimental liquids in equilibrium with olivine, plagioclase, and clinopyroxene at different pressures and temperatures using the method described by Kelley and Barton (2008). Chemical analyses mid-ocean ridge basalts glasses sampled from along the RR and JdF were used as liquid compositions. Samples with anomalous chemical compositions and samples that yielded pressures associated with unrealistically large uncertainties were filtered out of the database. The calculated pressures for the remaining 519 for the RR and 479 samples for the JdF were used to calculate the depths of partial crystallization and to identify the likely location of magma chambers. The RR results indicate that the pressure of partial crystallization decreases from 102 ± 33 MPa at the Charlie Gibbs Fracture Zone to 21 ± 12 MPa at 56°N, then increases to 367 ± 68 MPa as Iceland is approached. Four magma lenses were identified at depths of 2.5±.8km, 5.2±.8km, 5.9±1km, and 6.7±1. The magma lens at 2.46±.83 km agrees very well with seismically imaged sill at 2.5 km (Peirce et al 2007). The JDF results indicate that the pressure of partial crystallization decreases from 200 to100±50 MPa from the Blanco fracture zone to the north along the Cleft segment of the ridge. Calculated pressures remain approximately constant at 87±.53MPa along ridge segments to the north of the Cleft. Two magma lenses were identified at depths of 4.47±.89km and 4.08±1.5km. Pressures calculated for samples from single lava flows along the Cleft segment described by Stakes et al (2006) allow identification of two magma chambers at depths of 4.91±.77km and 4.33±1.07km which agree well with the depth of 5 to 6 km for a seismically imaged sill (Canales et al 2009). The average depth of partial crystallization of both ridges increase with increasing heat flux. While calculated pressures provide evidence for some crystallization in axial melt lenses, results obtained for some samples from virtually every locality also suggest partial crystallization in the crust beneath these lenses, and therefore the results support the many sill or crystal mush models for accretion of oceanic crust for both ridges. The average difference between pressures calculated with both methods within the uncertainty in the calculation. The Herzberg method returns slightly lower pressures for most samples.




Magma Plumbing Systems Along the Juan de Fuca Ridge


Book Description

The depth of magma storage beneath volcanoes has been a primary focus of recent geophysical and petrological research. Investigation of magma plumbing systems has important implications for volcanic hazard mitigation and eruption forecasting, and also for our understanding of the origin and evolution of magmas. This work is particularly important at mid-ocean ridges, as they are responsible for the formation of the majority of Earth’s crust. Previous petrologic studies of mid-ocean ridges have suggested that olivine-plagioclase-clinopyroxene-liquid cotectic crystallization begins at mantle depths, which has far-reaching implications for our understanding of the mechanisms for crustal accretion. We demonstrate a procedure for processing pressure results using the Kelley & Barton (2008) geobarometer, which significantly changes the interpretation of these results. This process allows for high-resolution interpretation of the pressures, and thus depths, of partial crystallization in mafic systems. Application of this approach to data from the Juan de Fuca Ridge suggests that olivine-plagioclase-clinopyroxene-liquid cotectic crystallization occurs within the crust, and not in the mantle as suggested previously. The results suggest that partial crystallization along the ridge is polybaric. In the southern portion of the ridge, seismically imaged melt lenses are within range of the calculated pressures, however, the average pressures suggest that the majority of olivine-plagioclase-clinopyroxene-liquid cotectic crystallization occurs at greater depths than the imaged melt lenses. This suggests multi-depth magma storage along much of the Juan de Fuca Ridge, with only the shallowest magma reservoirs being imaged by seismic studies.




Volcanic and Igneous Plumbing Systems


Book Description

Volcanic and Igneous Plumbing Systems: Understanding Magma Transport, Storage, and Evolution in the Earth's Crust synthesizes research from various geoscience disciplines to examine volcanic and igneous plumbing systems (VIPS) in-depth. VIPS comprise a network of magma transport and storage features in the Earth’s crust. These features include dykes, sills and larger magma bodies that form the pathway and supply system of magma beneath active volcanoes. Combining basic principles with world-class research and informative illustrations, this unique reference presents a holistic view of each topic covered, including magma transport, magma chambers, tectonics and volcanism. Addressing a variety of approaches to these topics, this book offers researchers and academics in the Earth Science fields, such as geophysics, volcanology and igneous petrology the information they need to apply the information to their own disciplines. Provides an easily understandable overview of current research on volcanic and igneous plumbing systems Includes full color illustrations to increase understanding Covers fundamental information needed to optimize comprehension Features a field example from world-class research in each chapter, including photographs and maps




Towards a Petrologically Constrained Thermal Model of Mid-ocean Ridges


Book Description

Plate spreading at mid-ocean ridges (MOR) is responsible for the creation of most of the crust on earth. The ridge system is very complex and many questions remain unresolved. Among these are the controls on the architecture of magma plumbing systems beneath mid-ocean ridges of different spreading rates and in proximity to transform faults. Previous studies have called into question the hypothesis that a decrease in magma flux and increase in conductive cooling along transforms faults promotes higher pressures of partial crystallization, and that this also explains the higher partial pressures of crystallization inferred for magmas erupted along slow spreading ridges compared to magmas erupted along faster spreading ridges. To test these hypothesis, I undertook a detailed analysis of pressures of partial crystallization (PPC) for magmas erupted along the slow spreading Reykjanes Ridge (RR), indeterminate spreading Juan de Fuca Ridge (JdF), 3 transforms along the fast to intermediate spreading East Pacific Rise (Blanco, Clipperton, and Siqueiros), and 5 transforms along the slow spreading Mid Atlantic Ridge (Oceanographer, Famous Transform A & B, Kane, and 15°20’N). PPC were calculated from the compositions of glasses (quenched liquids) lying along the P (and T) dependent olivine, plagioclase, and augite cotectic using the method described by Kelley and Barton (2008). Published analyses of MOR basalt glasses sampled from the ridges and transforms were used as input data. Samples with anomalous chemical compositions and samples that yielded pressures associated with unrealistically large uncertainties were filtered out of the database. The calculated pressures for the remaining 459 samples for the RR, 564 samples for the JdF, and 1056 samples for the transforms were used to calculate the depths of partial crystallization and to identify the likely location of magma chambers. The RR results indicate that the pressure of partial crystallization decreases from 102 ± 37 MPa at the Charlie Gibbs Fracture Zone to 12 ± 14 MPa at 56°N, then increases to 357 ± 68 MPa as Iceland is approached. Five magma lenses were identified at depths of 3.6 ± 1.15 km, 0.2 ± .48 km, 2.2 ± 1km, 6.7 ± 1km, and 5.1 ± 0.8km. The magma lens at 2.2 ± 1 km agrees very well with seismically imaged sill at 2.5 km. The JDF results indicate that the pressure of partial crystallization decreases from 207 ± 90 MPa near the Blanco fracture zone to 107 ± 54 MPa along the Cleft segment of the ridge to the north. Calculated pressures remain approximately constant at 87± 73 MPa along ridge segments to the north of Cleft. One magma lens was identified at depths of 2.90± 0.9 km which is in good agreement with a nearby seismically imaged magma lens at 2.5 km depth. The pressures of partial crystallization for the transforms ranged from 0 to 520 MPa with most samples returning pressures of less than 300 MPa. Pressures of




Volcanic and Igneous Plumbing Systems


Book Description

Volcanic and Igneous Plumbing Systems: Understanding Magma Transport, Storage, and Evolution in the Earth's Crust synthesizes research from various geoscience disciplines to examine volcanic and igneous plumbing systems (VIPS) in-depth. VIPS comprise a network of magma transport and storage features in the Earth's crust. These features include dykes, sills and larger magma bodies that form the pathway and supply system of magma beneath active volcanoes. Combining basic principles with world-class research and informative illustrations, this unique reference presents a holistic view of each topic covered, including magma transport, magma chambers, tectonics and volcanism. Addressing a variety of approaches to these topics, this book offers researchers and academics in the Earth Science fields, such as geophysics, volcanology and igneous petrology the information they need to apply the information to their own disciplines.




Magma to Microbe


Book Description

Magma to Microbe Published by the American Geophysical Union as part of the Geophysical Monograph Series, Volume 178. Hydrothermal systems at oceanic spreading centers reflect the complex interactions among transport, cooling and crystallization of magma, fluid circulation in the crust, tectonic processes, water-rock interaction, and the utilization of hydrothermal fluids as a metabolic energy source by microbial and macro-biological ecosystems. The development of mathematical and numerical models that address these complex linkages is a fundamental part the RIDGE 2000 program that attempts to quantify and model the transfer of heat and chemicals from “mantle to microbes” at oceanic ridges. This volume presents the first “state of the art” picture of model development in this context. The most outstanding feature of this volume is its emphasis on mathematical and numerical modeling of a broad array of hydrothermal processes associated with oceanic spreading centers. By examining the state of model development in one volume, both cross-fertilization of ideas and integration across the disparate disciplines that study seafloor hydrothermal systems is facilitated. Students and scientists with an interest in oceanic spreading centers in general and more specifically in ridge hydrothermal processes will find this volume to be an up-to-date and indispensable resource.




Encyclopedia of Marine Geosciences


Book Description

Globally growing demand of energy and mineral resources, reliable future projection of climate processes and the protection of coasts to mitigate the threats of disasters and hazards require a comprehensive understanding of the structure, ongoing processes and genesis of the marine geosphere. Beyond the “classical” research fields in marine geology in current time more general concepts have been evolved integrating marine geophysics, hydrography, marine biology, climatology and ecology. As an umbrella the term “marine geosciences” has been broadly accepted for this new complex field of research and the solutions of practical tasks in the marine realm. The “Encyclopedia of Marine Geosciences” comprises the current knowledge in marine geosciences whereby not only basic but also applied and technical sciences are covered. Through this concept a broad scale of users in the field of marine sciences and techniques is addressed from students and scholars in academia to engineers and decision makers in industry and politics.




Mid-Ocean Ridges


Book Description

Published by the American Geophysical Union as part of the Geophysical Monograph Series, Volume 148. Mid-ocean ridges play an important role in the plate-tectonic cycle of our planet. Extending some 50–60,000 km across the ocean-floor, the global mid-ocean ridge system is the site of creation of the oceanic crust and lithosphere that covers more than two thirds of the Earth's exterior. Approximately 75% of Earth's total heat flux occurs through oceanic crust, much of it at mid-ocean ridges through complex processes associated with magma solidification, heat transfer, and cooling of young oceanic lithosphere. While the majority of this heat loss occurs through conduction, approximately one third of the total heat loss at mid-ocean ridges is influenced by a convective process: hydrothermal circulation.




Volcanic Unrest


Book Description

This open access book summarizes the findings of the VUELCO project, a multi-disciplinary and cross-boundary research funded by the European Commission's 7th framework program. It comprises four broad topics: 1. The global significance of volcanic unrest 2. Geophysical and geochemical fingerprints of unrest and precursory activity 3. Magma dynamics leading to unrest phenomena 4. Bridging the gap between science and decision-making Volcanic unrest is a complex multi-hazard phenomenon. The fact that unrest may, or may not lead to an imminent eruption contributes significant uncertainty to short-term volcanic hazard and risk assessment. Although it is reasonable to assume that all eruptions are associated with precursory activity of some sort, the understanding of the causative links between subsurface processes, resulting unrest signals and imminent eruption is incomplete. When a volcano evolves from dormancy into a phase of unrest, important scientific, political and social questions need to be addressed. This book is aimed at graduate students, researchers of volcanic phenomena, professionals in volcanic hazard and risk assessment, observatory personnel, as well as emergency managers who wish to learn about the complex nature of volcanic unrest and how to utilize new findings to deal with unrest phenomena at scientific and emergency managing levels. This book is open access under a CC BY license.




Spatial-Statistical Properties of Geochemical Variability as Constraints on Magma Transport and Evolution Processes at Ocean Ridges


Book Description

I interpret the observations as the consequence of regionally distinctive internal proportions of different mantle lithologies (e.g., dunite versus harzburgite), in turn reflecting the organization of focused melt transport at mid-ocean ridges into channel-rich and channel-poor zones.