PG Ethylene Production from Ethylene-Rich Gas - Cost Analysis - Ethylene EC1A


Book Description

This report presents a cost analysis of Polymer Grade (PG) Ethylene production from an ethylene-rich stream obtained from a typical steam cracking plant, which uses ethane as feedstock. The process examined comprises the separation of ethylene from dried cracked gas, including the following steps: C3+ hydrocarbons separation; acetylene hydrogenation; light ends separation; and ethylene fractionation. In addition to polymer grade Ethylene, the process also generates a hydrogen-rich gas, sold as by-product. This report was developed based essentially on the following reference(s): "Ethylene", Ullmann's Encyclopedia of Industrial Chemistry, 7th edition Keywords: Ethene, Deethanizer, Ethane-Ethylene Splitter, C2 Splitter, Lummus, KBR, Technip, Linde, S&W




Ethylene Production Cost Analysis - Overview - Ethylene AA01


Book Description

This report presents alternatives for producing Ethylene from different feedstocks and a cost comparison of these alternatives, across different countries. More specifically, the report compares the costs of Ethylene production through the following pathways: * Pathway 1: Ethylene Production from Ethane * Pathway 2: Ethylene Production from Ethane and Propane * Pathway 3: Green Ethylene Production from Ethanol In Pathways 1 and 2, Ethylene is produced via steam cracking of different feedstocks: ethane and a mixture of ethane and propane. In Pathway 3, Ethylene is produced from ethanol, which is a renewable feedstock. The analysis presented in this report includes: * A comparison of the economic potential of the pathways listed above in several countries, comprising: - Comparative analysis of capital costs - Comparative analysis of production costs - Comparison between product price and raw materials costs of each pathway * An overview of each production pathway, including: - Raw material(s) consumption figures and product(s) generated - Related technology licensors and block flow diagram of representative industrial processes Keywords: Hydrocarbon Pyrolysis, Cracking Furnace, Ethene, Propene, Shale Gas, CB&I Lummus, Technip, Shaw Stone & Webster, Kellogg-Braun & Root, KBR, Linde, Green Ethylene, Braskem, Chematur Technologies, Petron Scientech, Scientific Design, Dow Chemical, BP, Ethanol Dehydration




Ethylene Production via Cracking of Ethane/Propane - Cost Analysis - Ethylene E21A


Book Description

This report presents a cost analysis of polymer grade (PG) Ethylene production starting from an ethane/propane mixture at a volume ratio of 4:1 A typical steam cracking process with front-end demethanization is employed. In this process, a mix of 80 vol% ethane and 20 vol% propane is thermally cracked in pyrolysis furnaces. In addition to polymer grade Ethylene, the process also generates polymer grade propylene and hydrogen-rich gas. This report was developed based essentially on the following reference(s): "Ethylene", Ullmann's Encyclopedia of Industrial Chemistry, 7th edition Keywords: Ethene, Propene, Hydrocarbon Pyrolysis, Cracking Furnace, Lummus, KBR, Technip, Linde, S&W




Ethylene Production via Steam Cracking of Ethane - Cost Analysis - Ethylene E11A


Book Description

This report presents a cost analysis of polymer grade (PG) Ethylene production from ethane feedstock using a typical steam cracking process. In this process, ethane is thermally cracked in pyrolysis furnaces through the use of steam. In addition to polymer grade Ethylene, the process also generates a methane-rich gas (used as fuel in the cracking furnaces) and hydrogen-rich gas, sold as by-product. This report was developed based essentially on the following reference(s): "Ethylene", Ullmann's Encyclopedia of Industrial Chemistry, 7th edition Keywords: Ethene, Hydrocarbon Pyrolysis, Cracking Furnace, Lummus, KBR, Technip, Linde, S&W




Propylene Production Cost Analysis - Overview - Propylene AA01


Book Description

This report presents alternatives for producing PG Propylene from different feedstocks and a cost comparison of these alternatives, across different countries. More specifically, the report compares the costs of PG Propylene production through the following pathways:* Pathway 1: Propylene Production from Light Naphtha* Pathway 2: Propylene Production from Ethylene and Butenes* Pathway 3: Propylene Production from Propane (with Hydrogen Generation)Pathway 1 corresponds to a steam cracker for Propylene production (ethylene as co-product). In Pathway 2, Propylene is produced via metathesis reaction of ethylene with 2-butene (present in raffinate-2 feedstock). In Pathway 3, propane is dehydrogenated to Propylene with hydrogen generated being valued as fuel. The analysis presented in this report includes:* A comparison of the economic potential of the pathways listed above in several countries, comprising: * Comparative analysis of capital costs * Comparative analysis of production costs * Comparison between product price and raw materials costs of each pathway * An overview of each production pathway, including: * Raw material(s) consumption figures and product(s) generated * Related technology licensors and block flow diagram of representative industrial processes Keywords: Propene, Ethene, Steam Cracking, PDH, Propane Dehydrogenation, Olefins Conversion Technology, OCT




Ethylene Production Cost Analysis - Overview - Ethylene AA01


Book Description

This report presents alternatives for producing Ethylene from different feedstocks and a cost comparison of these alternatives, across different countries. More specifically, the report compares the costs of Ethylene production through the following pathways:* Pathway 1: Ethylene Production from Ethane* Pathway 2: Ethylene Production from Ethane and Propane* Pathway 3: Green Ethylene Production from EthanolIn Pathways 1 and 2, Ethylene is produced via steam cracking of different feedstocks: ethane and a mixture of ethane and propane. In Pathway 3, Ethylene is produced from ethanol, which is a renewable feedstock.The analysis presented in this report includes:* A comparison of the economic potential of the pathways listed above in several countries, comprising: * Comparative analysis of capital costs * Comparative analysis of production costs * Comparison between product price and raw materials costs of each pathway * An overview of each production pathway, including: * Raw material(s) consumption figures and product(s) generated * Related technology licensors and block flow diagram of representative industrial processes Keywords: Hydrocarbon Pyrolysis, Cracking Furnace, Ethene, Propene, Shale Gas, CB&I Lummus, Technip, Shaw Stone & Webster, Kellogg-Braun & Root, KBR, Linde, Green Ethylene, Braskem, Chematur Technologies, Petron Scientech, Scientific Design, Dow Chemical, BP, Ethanol Dehydration




Handbook of Industrial Chemistry and Biotechnology


Book Description

Substantially revising and updating the classic reference in the field, this handbook offers a valuable overview and myriad details on current chemical processes, products, and practices. No other source offers as much data on the chemistry, engineering, economics, and infrastructure of the industry. The Handbook serves a spectrum of individuals, from those who are directly involved in the chemical industry to others in related industries and activities. It provides not only the underlying science and technology for important industry sectors, but also broad coverage of critical supporting topics. Industrial processes and products can be much enhanced through observing the tenets and applying the methodologies found in chapters on Green Engineering and Chemistry (specifically, biomass conversion), Practical Catalysis, and Environmental Measurements; as well as expanded treatment of Safety, chemistry plant security, and Emergency Preparedness. Understanding these factors allows them to be part of the total process and helps achieve optimum results in, for example, process development, review, and modification. Important topics in the energy field, namely nuclear, coal, natural gas, and petroleum, are covered in individual chapters. Other new chapters include energy conversion, energy storage, emerging nanoscience and technology. Updated sections include more material on biomass conversion, as well as three chapters covering biotechnology topics, namely, Industrial Biotechnology, Industrial Enzymes, and Industrial Production of Therapeutic Proteins.




Contrast Media


Book Description

This revised edition of Contrast Media: Safety Issues and Guidelines, updates the successful first edition and contains new chapters. It provides an invaluable, unique and unparalleled source of information on the safety issues relating to contrast media.




The SUDS Manual


Book Description

This guidance document is aimed at providing comprehensive advice on the implementation of SUDS in the UK. It provides information for all aspects of the life cycle of SUDS, from initial planning, design through to construction and their management in the context of the current regulatory framework.