PGPR Amelioration in Sustainable Agriculture


Book Description

PGPR Amelioration in Sustainable Agriculture: Food Security and Environmental Management explores the growth-promoting rhizobacteria (PGPR) that are indigenous to soil and plant rhizosphere. These microorganisms have significant potential as important tools for sustainable agriculture. PGPR enhance the growth of root systems and often control certain plant pathogens. As PGPR amelioration is a fascinating subject, is multidisciplinary in nature, and concerns scientists involved in plant heath and plant protection, this book is an ideal resource that emphasizes the current trends of, and probable future of, PGPR developments. Chapters incorporate both theoretical and practical aspects and may serve as baseline information for future research. This book will be useful to students, teachers and researchers, both in universities and research institutes, especially working in areas of agricultural microbiology, plant pathology and agronomy. - Presents new concepts and current development in PGPR research and evaluates the implications for sustainable productivity - Describes the role of multi-omics approaches in establishing an understanding of plant–microbe interactions that help plants optimize abiotic stresses - Incorporates both theoretical and practical aspects, and will serve as a baseline for future research




Plant Growth Promoting Rhizobacteria (PGPR): Prospects for Sustainable Agriculture


Book Description

Sustainable increase in agricultural production while keeping the environmental quality, agro-ecosystem function and biodiversity is a real challenge in current agricultural practices. Application of PGPR can help in meeting the expected demand for increasing agricultural productivity to feed the world’s booming population. Global concern over the demerits of chemicals in agriculture has diverted the attention of researchers towards sustainable agriculture by utilizing the potential of Plant Growth Promoting Rhizobacteria (PGPR). Use of PGPR as biofertilizers, biopesticides, soil, and plant health managers has gained considerable agricultural and commercial significance. The book Plant Growth Promoting Rhizobacteria (PGPR): Prospects for Sustainable Agriculture has contributions in the form of book chapter from 25 eminent global researchers, that discusses about the PGPRs and their role in growth promotion of various crop plants, suppression of wide range of phytopathogens, their formulation, effect of various factors on growth and performance of PGPR, assessment of diversity of PGPR through microsatellites and role of PGPR in mitigating biotic and abiotic stress.This book will be helpful for students, teachers, researchers, and entrepreneurs involved in PGPR and allied fields. The book will be highly useful to researchers, teachers, students, entrepreneurs, and policymakers.




Plant Health Under Biotic Stress


Book Description

The book illustrates the use of putative microbial agents which provide good protection to the plant from biotic pathogens attack. An up to date knowledge on plant-microbiome interaction strategies in terms of improved sustainability has been discussed. Information from experts across the globe on the application of microbes for providing amicable solution in sustainable agriculture has been gathered. In addition, information related to microbes mediated resistance levels leading to enhanced plant health has been well presented. The chapters have emphasised the use of Plant Growth Promoting Rhizobacteria (PGPR) and other potential biocontrol agents/antagonists in the management of plant diseases which provide extensive information to the readers. Literature on microbial root colonization, plant growth promotions, and also on the protection of plants from attack of various soil borne pathogens have been presented in a coherent way. Information on the application of potential strain of the bio-control fungi, endophytes, actinomycetes strengthening the plants ability which rescue the plant from pathogens attack leading to improved plant health has also been underpinned.




Plant Growth and Health Promoting Bacteria


Book Description

To cope with the increasing problems created by agrochemicals such as plant fertilizers, pesticides and other plant protection agents, biological alternatives have been developed over the past years. These include biopesticides, such as bacteria for the control of plant diseases, and biofertilizer to improve crop productivity and quality. Especially plant growth promoting rhizobacteria (PGPR) are as effective as pure chemicals in terms of plant growth enhancement and disease control, in addition to their ability to manage abiotic and other stresses in plants. The various facets of these groups of bacteria are treated in this Microbiology Monograph, with emphasis on their emergence in agriculture. Further topics are Bacillus species that excrete peptides and lipopeptides with antifungal, antibacterial and surfactant activity, plant-bacteria-environment interactions, mineral-nutrient exchange, nitrogen assimilation, biofilm formation and cold-tolerant microorganisms.




Plant Growth Promoting Rhizobacteria for Sustainable Stress Management


Book Description

Increasing agro productivity to feed a growing global population under the present climate scenario requires optimizing the use of resources and adopting sustainable agricultural production. This can be achieved by using plant beneficial bacteria, i.e., those bacteria that enhance plant growth under abiotic stress conditions, and more specifically, microorganisms such as plant growth promoting rhizobacteria (PGPR), which are the most promising candidates in this regard. Attaining sustainable agricultural production while preserving environmental quality, agro-ecosystem functions and biodiversity represents a major challenge for current agricultural practices; further, the traditional use of chemical inputs (fertilizers, pesticides, nutrients etc.) poses serious threats to crop productivity, soil fertility and the nutritional value of farm produce. Given these risks, managing pests and diseases, maintaining agro-ecosystem health, and avoiding health issues for humans and animals have now become key priorities. The use of PGPR as biofertilizers, plant growth promoters, biopesticides, and soil and plant health managers has attracted considerable attention among researchers, agriculturists, farmers, policymakers and consumers alike. Using PGPR can help meet the expected demand for global agricultural productivity to feed the world’s booming population, which is predicted to reach roughly 9 billion by 2050. However, to do so, PGPR strains must be safe for the environment, offer considerable plant growth promotion and biocontrol potential, be compatible with useful soil rhizobacteria, and be able to withstand various biotic and abiotic stresses. Accordingly, the book also highlights the need for better strains of PGPR to complement increasing agro-productivity.




Phytomicrobiome Interactions and Sustainable Agriculture


Book Description

A guide to the role microbes play in the enhanced production and productivity of agriculture to feed our growing population Phytomicrobiome Interactions and Sustainable Agriculture offers an essential guide to the importance of ‘Phytomicrobiome’ and explores its various components. The authors – noted experts on the topic – explore the key benefits of plant development such as nutrient availability, amelioration of stress and defense to plant disease. Throughout the book, the authors introduce and classify the corresponding Phytomicrobiome components and then present a detailed discussion related to its effect on plant development: controlling factors of this biome, its behaviour under the prevailing climate change condition and beneficial effects. The book covers the newly emerging technical concept of Phytomicrobiome engineering, which is an advanced concept to sustain agricultural productivity in recent climatic scenario. The text is filled with comprehensive, cutting edge data, making it possible to access this ever-growing wealth of information. This important book: Offers a one-stop resource on phytomicrobiome concepts Provides a better understanding of the topic and how it can be employed for understanding plant development Contains a guide to sustaining agriculture using phytomicrobiome engineering Presents information that can lead to enhanced production and productivity to feed our growing population Written for students, researchers and policy makers of plant biology, Phytomicrobiome Interactions and Sustainable Agriculture offers a clear understanding of the importance of microbes in overall plant growth and development.




Field Crops: Sustainable Management by PGPR


Book Description

This book discusses the most challenging task ahead of researchers from India and around the globe: providing disease-free field crops for the ever-growing world population. In Asia, despite being cultivated in massive volumes, major crops, including cereals, oil seed, tuber and non-tuber vegetables, and fruit, are not meeting the demands of the increasing population. This book showcases naturally occurring beneficial microbes in the form of plant growth promoting rhizobacteria, or PGPR, which make it possible to grow field crops without applying synthetic chemicals. Our understanding of PGPR has increased exponentially in recent decades. They play a multifarious role in developing sustainable systems of crop production and protection. The book focuses on the mechanistic behaviors of PGPRs, their use to develop sustainable cultivation techniques, and their application to enhance crop growth and productivity at the cutting edge of tech-oriented agriculture and to replace hazardous chemicals with microbial inoculants. The book is useful to agronomists, microbiologists, ecologists, plant pathologists, molecular biologists, environmentalists, policy makers, conservationists, and NGOs working on organically grown field crops.




The Root Systems in Sustainable Agricultural Intensification


Book Description

Explore an in-depth and insightful collection of resources discussing various aspects of root structure and function in intensive agricultural systems The Root Systems in Sustainable Agricultural Intensification delivers a comprehensive treatment of state-of-the-art concepts in the theoretical and practical aspects of agricultural management to enhance root system architecture and function. The book emphasizes the agricultural measures that enhance root capacity to develop and function under a range of water and nutrient regimes to maximize food, feed, and fibre production, as well as minimize undesirable water and nutrient losses to the environment. This reference includes resources that discuss a variety of soil, plant, agronomy, farming system, breeding, molecular and modelling aspects to the subject. It also discusses strategies and mechanisms that underpin increased water- and nutrient-use efficiency and combines consideration of natural and agricultural systems to show the continuity of traits and mechanisms. Finally, the book explores issues related to the global economy as well as widespread social issues that arise from, or are underpinned by, agricultural intensification. Readers will also benefit from the inclusion of: A thorough introduction to sustainable intensification, including its meaning, the need for the technology, components, and the role of root systems Exploration of the dynamics of root systems in crop and pasture genotypes over the last 100 years Discussion of the interplay between root structure and function with soil microbiome in enhancing efficiency of nitrogen and phosphorus acquisition Evaluation of water uptake in drying soil, including balancing supply and demand Perfect for agronomists, horticulturalists, plant and soil scientists, breeders, and soil microbiologists, The Root Systems in Sustainable Agricultural Intensification will also earn a place in the libraries of advanced undergraduate and postgraduate students in this field who seek a one-stop reference in the area of root structure and function.




Plant Growth Promoting Rhizobacteria for Sustainable Stress Management


Book Description

Attaining sustainable agricultural production while preserving environmental quality, agro-ecosystem functions and biodiversity represents a major challenge for current agricultural practices; further, the traditional use of chemical inputs (fertilizers, pesticides, nutrients etc.) poses serious threats to crop productivity, soil fertility and the nutritional value of farm produce. Given these risks, managing pests and diseases, maintaining agro-ecosystem health, and avoiding health issues for humans and animals have now become key priorities. The use of PGPR as biofertilizers, plant growth promoters, biopesticides, and soil and plant health managers has attracted considerable attention among researchers, agriculturists, farmers, policymakers and consumers alike. Using PGPR as bioinoculants can help meet the expected demand for global agricultural productivity to feed the world’s booming population, which is predicted to reach roughly 9 billion by 2050. However, to provide effective bioinoculants, PGPR strains must be safe for the environment, offer considerable plant growth promotion and biocontrol potential, be compatible with useful soil rhizobacteria, and be able to withstand various biotic and abiotic stresses. Accordingly, the book also highlights the need for better strains of PGPR to complement increasing agro-productivity.




Biofertilizers


Book Description

Great attention has been paid to reduce the use of conventional chemical fertilizers harming living beings through food chain supplements from the soil environment. Therefore, it is necessary to develop alternative sustainable fertilizers to enhance soil sustainability and agriculture productivity. Biofertilizers are the substance that contains microorganisms (bacteria, algae, and fungi) living or latent cells that can enrich the soil quality with nitrogen, phosphorous, potassium, organic matter, etc. They are a cost-effective, biodegradable, and renewable source of plant nutrients/supplements to improve the soil-health properties. Biofertilizers emerge as an attractive alternative to chemical fertilizers, and as a promising cost-effective technology for eco-friendly agriculture and a sustainable environment that holds microorganisms which enhance the soil nutrients' solubility leading a raise in its fertility, stimulates crop growth and healthy food safety. This book provides in-depth knowledge about history and fundamentals to advances biofertilizers, including latest reviews, challenges, and future perspectives. It covers fabrication approaches, and various types of biofertilizers and their applications in agriculture, environment, forestry and industrial sectors. Also, organic farming, quality control, quality assurance, food safety and case-studies of biofertilizers are briefly discussed. Biofertilizers' physical properties, affecting factors, impact, and industry profiles in the market are well addressed. This book is an essential guide for farmers, agrochemists, environmental engineers, scientists, students, and faculty who would like to understand the science behind the sustainable fertilizers, soil chemistry and agroecology.