Design of Self-Assembling Materials


Book Description

This book provides in-depth insights into assembling dynamics of proteins, DNA and other nanoparticles. The applications of basic knowledge in the development of artificial self-assembling systems will be discussed and state of the art methodology in the field will be presented.This interdisciplinary work brings together aspects of different fields of expertise such as Biology, Physics and Material Sciences and is intended for researchers, professors and graduate students interested in the design of self-assembling materials.




New Models of the Cell Nucleus: Crowding, Entropic Forces, Phase Separation, and Fractals


Book Description

International Review of Cell and Molecular Biology presents current advances and comprehensive reviews in cell biology--both plant and animal. Articles address structure and control of gene expression, nucleocytoplasmic interactions, control of cell development and differentiation, and cell transformation and growth. Impact factor for 2012: 4.973. Ideas from the fields of biophysics, physical chemistry, of polymer and colloid, and soft matter science have helped clarify the structure and functions of the cell nucleus. The development of powerful methods for modeling conformations and interactions of macromolecules has also contributed. The book aims to encourage cell and molecular biologists to become more familiar with and understand these new concepts and methods, and the crucial contributions they are making to our perception of the nucleus. This is the first volume to present a comprehensive review of New Models of the Cell Nucleus




Soft Matter And Biomaterials On The Nanoscale: The Wspc Reference On Functional Nanomaterials - Part I (In 4 Volumes)


Book Description

This book is indexed in Chemical Abstracts ServiceSoft and bio-nanomaterials offer a tremendously rich behavior due to the diversity and tailorability of their structures. Built from polymers, nanoparticles, small and large molecules, peptoids and other nanoscale building blocks, such materials exhibit exciting functions, either intrinsically or through the engineering of their organization and combination of blocks. Thus, it is not surprising that a variety of challenges, for example, in energy storage, environment protection, advanced manufacturing, purification and healthcare, can be addressed using these materials. The recent advances in understanding the behavior of soft matter and biomaterials are being actively translated into functional materials systems and devices, which take advantages of newly discovered and specifically created morphologies with desired properties. This major reference work presents a detailed overview of recent research developments on fundamental and application-inspired aspects of soft and bio-nanomaterials and their emerging functions, and will be divided into four volumes: Vol 1: Soft Matter under Geometrical Confinement: From Fundamentals at Planar Surfaces and Interfaces to Functionalities of Nanoporous Materials; Vol 2: Polymers on the Nanoscale: Nano-structured Polymers and Their Applications; Vol 3: Bio-Inspired Nanomaterials: Nanomaterials Built from Biomolecules and Using Bio-derived Principles; Vol 4: Nanomedicine: Nanoscale Materials in Nano/Bio Medicine.







Soft Condensed Matter Physics in Molecular and Cell Biology


Book Description

Soft condensed matter physics, which emerged as a distinct branch of physics in the 1990s, studies complex fluids: liquids in which structures with length scale between the molecular and the macroscopic exist. Polymers, liquid crystals, surfactant solutions, and colloids fall into this category. Physicists deal with properties of soft matter system







Advanced Dairy Chemistry: Volume 1: Proteins, Parts A&B


Book Description

Advanced Dairy Chemistry-l: Proteins is the first volume of the third edition of the series on advanced topics in Dairy Chemistry, which started in 1982 with the publication of Developments in Dairy Chemistry. This series of volume~ is intended to be a coordinated and authoritative treatise on Dairy Chemistry. In the decade since the second edition of this volume was published (1992), there have been considerable advances in the study of milk proteins, which are reflected in changes to this book. All topics included in the second edition are retained in the current edition, which has been updated and considerably expanded from 18 to 29 chapters. Owing to its size, the book is divided into two parts; Part A (Chapters 1-11) describes the more basic aspects of milk proteins while Part B (Chapters 12-29) reviews the more applied aspects. Chapter 1, a new chapter, presents an overview of the milk protein system, especially from an historical viewpoint. Chapters 2-5, 7-9, 15, and 16 are revisions of chapters in the second edition and cover analytical aspects, chemical and physiochemical properties, biosynthesis and genetic polymorphism of the principal milk proteins. Non-bovine caseins are reviewed in Chapter 6.




Thermodynamics of Phase Equilibria in Food Engineering


Book Description

Thermodynamics of Phase Equilibria in Food Engineering is the definitive book on thermodynamics of equilibrium applied to food engineering. Food is a complex matrix consisting of different groups of compounds divided into macronutrients (lipids, carbohydrates, and proteins), and micronutrients (vitamins, minerals, and phytochemicals). The quality characteristics of food products associated with the sensorial, physical and microbiological attributes are directly related to the thermodynamic properties of specific compounds and complexes that are formed during processing or by the action of diverse interventions, such as the environment, biochemical reactions, and others. In addition, in obtaining bioactive substances using separation processes, the knowledge of phase equilibria of food systems is essential to provide an efficient separation, with a low cost in the process and high selectivity in the recovery of the desired component. This book combines theory and application of phase equilibria data of systems containing food compounds to help food engineers and researchers to solve complex problems found in food processing. It provides support to researchers from academia and industry to better understand the behavior of food materials in the face of processing effects, and to develop ways to improve the quality of the food products. - Presents the fundamentals of phase equilibria in the food industry - Describes both classic and advanced models, including cubic equations of state and activity coefficient - Encompasses distillation, solid-liquid extraction, liquid-liquid extraction, adsorption, crystallization and supercritical fluid extraction - Explores equilibrium in advanced systems, including colloidal, electrolyte and protein systems