Phase Diagrams for Zirconium and Zirconia Systems


Book Description

Draws from previously published material and new material in the Ceramic Phase Diagram Data Center files at the National Institute of Standards and Technology (formerly the National Bureau of Standards) to offer the Society's first volume of phase diagrams focusing on systems containing a specific e




Thermodynamic Properties of Some Metal Oxide-zirconia Systems


Book Description

Metal oxide-zirconia systems are a potential class of materials for use as structural materials at temperatures above 1900 K. These materials must have no destructive phase changes and low vapor pressures. Both alkaline earth oxide (MgO, CaO, SrO, and BaO)-zirconia and some rare earth oxide (Y2O3, Sc2O3, La2O3, CeO2, Sm2O3, Gd2O3, Yb2O3, Dy2O3, Ho2O3, and Er2O3)-zirconia system are examined. For each system, the phase diagram is discussed and the vapor pressure for each vapor specie is calculated via a free energy minimization procedure. The available thermodynamic literature on each system is also surveyed. Some of the systems look promising for high temperature structural materials.







Phase Equilibria Diagrams


Book Description



















Phase Diagrams 6-III


Book Description

Phase Diagrams: Materials Science and Technology, Volume III is an eight-chapter text that deals with the use of phase diagrams in electronic materials and glass technology. This volume first describes several crystal-growth techniques and the use of phase diagrams in crystals grown from high-temperature systems. This is followed by discussions on phase problems encountered in semiconductor studies with compound semiconductors and the use of phase diagrams in illustrating superconducting state and superconductivity property of materials. A chapter deals with the preparation of metastable phases by rapid quenching from the liquid (splat cooling) and the alloy constitution changes associated with their formation and properties, with a particular emphasis on the phase-diagram representation of metastable alloy phases. The discussion then shifts to metastable liquid immiscibility, occurrence, techniques of study, mechanisms of microphase separation, phase diagrams, and practical applications. This volume also examines the use of phase diagrams to obtain solubility data for high-temperature systems assisting in the prediction of dissolution behavior. The concluding chapters explore the relationships between phase diagrams and the structure of glass-forming oxide and phase studies of molten salts and their interactions with other salts and oxides. This book will be useful to all scientists, engineers, and materials science students who are investigating and developing materials, as well as to the end users of the materials.