Phase Stability in Metals and Alloys
Author : Battelle Memorial Institute
Publisher :
Page : 620 pages
File Size : 36,24 MB
Release : 1967
Category : Technology & Engineering
ISBN :
Author : Battelle Memorial Institute
Publisher :
Page : 620 pages
File Size : 36,24 MB
Release : 1967
Category : Technology & Engineering
ISBN :
Author : F. Ducastelle
Publisher : North Holland
Page : 536 pages
File Size : 49,75 MB
Release : 1991
Category : Science
ISBN :
Hardbound. The main purpose of this book is to describe the modern tools of solid state physics (in particular, electronic structure calculations and statistical thermodynamics) that enable us to understand ordering effects in alloys and to determine phase diagrams. This approach is used more to throw light on the most important physical mechanisms rather than to be able to make accurate predictions suitable for particular applications. On the other hand, more phenomenological, practically oriented approaches can expand the scope of these new theoretical insights. A second purpose of the book is to show that materials science can provide wonderful and too often ignored examples to test and discuss the most fundamental physical theories. For example, many real alloys on a face centered cubic lattice are marvellous examples of the Ising model on this lattice with many different ordered structures, commensurate or not.The text is therefore defi
Author : Jürgen Hafner
Publisher : Springer Science & Business Media
Page : 416 pages
File Size : 24,65 MB
Release : 2012-12-06
Category : Science
ISBN : 3642830587
The development of the modern theory of metals and alloys has coincided with great advances in quantum-mechanical many-body theory, in electronic structure calculations, in theories of lattice dynamics and of the configura tional thermodynamics of crystals, in liquid-state theory, and in the theory of phase transformations. For a long time all these different fields expanded quite independently, but now their overlap has become sufficiently large that they are beginning to form the basis of a comprehensive first-principles the ory of the cohesive, structural, and thermodynamical properties of metals and alloys in the crystalline as well as in the liquid state. Today, we can set out from the quantum-mechanical many-body Hamiltonian of the system of electrons and ions, and, following the path laid out by generations of the oreticians, we can progress far enough to calculate a pressure-temperature phase diagram of a metal or a composition-temperature phase diagram of a binary alloy by methods which are essentially rigorous and from first prin ciples. This book was written with the intention of confronting the materials scientist, the metallurgist, the physical chemist, but also the experimen tal and theoretical condensed-matter physicist, with this new and exciting possibility. Of course there are limitations to such a vast undertaking as this. The selection of the theories and techniques to be discussed, as well as the way in which they are presented, are necessarily biased by personal inclination and personal expertise.
Author : G.M. Stocks
Publisher : Springer Science & Business Media
Page : 638 pages
File Size : 10,16 MB
Release : 2012-12-06
Category : Science
ISBN : 9400909152
One of the ultimate goals of materials research is to develop a fun damental and predictive understanding of the physical and metallurgical properties of metals and alloys. Such an understanding can then be used in the design of materials having novel properties or combinations of proper ties designed to meet specific engineering applications. The development of new and useful alloy systems and the elucidation of their properties are the domain of metallurgy. Traditionally, the search for new alloy systems has been conducted largely on a trial and error basis, guided by the skill and intuition of the metallurgist, large volumes of experimental data, the principles of 19th century thermodynamics and ad hoc semi-phenomenological models. Recently, the situation has begun to change. For the first time, it is possible to understand the underlying mechanisms that control the formation of alloys and determine their properties. Today theory can begin to offer guidance in predicting the properties of alloys and in developing new alloy systems. Historically, attempts directed toward understanding phase stability and phase transitions have proceeded along distinct and seemingly diverse lines. Roughly, we can divide these approaches into the following broad categories. 1. Experimental determination of phase diagrams and related properties, 2. Thermodynamic/statistical mechanical approaches based on semi phenomenological models, and 3. Ab initio quantum mechanical methods. Metallurgists have traditionally concentrated their efforts in cate gories 1 and 2, while theoretical physicists have been preoccupied with 2 and 3.
Author : David G. Pettifor
Publisher : Routledge
Page : 328 pages
File Size : 12,15 MB
Release : 1992
Category : Science
ISBN :
Author : Michael C. Gao
Publisher : Springer
Page : 524 pages
File Size : 19,67 MB
Release : 2016-04-27
Category : Technology & Engineering
ISBN : 3319270133
This book provides a systematic and comprehensive description of high-entropy alloys (HEAs). The authors summarize key properties of HEAs from the perspective of both fundamental understanding and applications, which are supported by in-depth analyses. The book also contains computational modeling in tackling HEAs, which help elucidate the formation mechanisms and properties of HEAs from various length and time scales.
Author : Esther Belin-Ferr
Publisher : World Scientific
Page : 408 pages
File Size : 17,30 MB
Release : 2008
Category : Technology & Engineering
ISBN : 9812790586
Complex metal alloys (CMAs) comprise a huge group of largely unknown alloys and compounds, where many phases are formed with crystal structures based on giant unit cells containing atom clusters, ranging from tens of to more than thousand atoms per unit cell. In these phases, for many phenomena, the physical length scales are substantially smaller than the unit-cell dimension. Hence, these materials offer unique combinations of properties which are mutually exclusive in conventional materials, such as metallic electric conductivity combined with low thermal conductivity, good light absorption with high-temperature stability, high metallic hardness with reduced wetting by liquids, etc.This book is the first of a series of books issued yearly as a deliverable to the European Community of the School established within the European Network of Excellence CMA. Written by reputed experts in the fields of metal physics, surface physics, surface chemistry, metallurgy, and process engineering, this book brings together expertise found inside as well as outside the network to provide a comprehensive overview of the current state of knowledge in CMAs.
Author : Louis Toth
Publisher : Elsevier
Page : 296 pages
File Size : 13,45 MB
Release : 2014-04-11
Category : Technology & Engineering
ISBN : 032315722X
Refractory Materials, Volume 7: Transition Metal Carbides and Nitrides discusses the developments in transition metal carbide and nitride research. This volume is organized into nine chapters that emphasize the mechanical and superconducting properties of these compounds. The introductory chapters deal with the general properties, preparation techniques, characterization, crystal chemistry, phase relationships, and thermodynamics of transition metal carbides and nitrides. The following chapter highlights the mechanical properties of these compounds, such as elastic and plastic deformation, fracture, strengthening mechanisms, and hardness. The discussion then shifts to specific electrical and magnetic properties, including electrical resistivity, Hall coefficient, and magnetic susceptibility. A separate chapter is devoted to carbides and nitrides as superconductors. The concluding chapters explore certain theories that explain the mechanisms of band structure and bonding in carbides and nitrides. This volume is of great value to research workers in metallurgy, ceramics, physics, chemistry, and related fields, as well as to advanced students investigating problems concerning high temperature materials or interstitial compounds.
Author : Stephen Z.D. Cheng
Publisher : Elsevier
Page : 325 pages
File Size : 26,36 MB
Release : 2008-09-10
Category : Science
ISBN : 0080558208
A classical metastable state possesses a local free energy minimum at infinite sizes, but not a global one. This concept is phase size independent. We have studied a number of experimental results and proposed a new concept that there exists a wide range of metastable states in polymers on different length scales where their metastability is critically determined by the phase size and dimensionality. Metastable states are also observed in phase transformations that are kinetically impeded on the pathway to thermodynamic equilibrium. This was illustrated in structural and morphological investigations of crystallization and mesophase transitions, liquid-liquid phase separation, vitrification and gel formation, as well as combinations of these transformation processes. The phase behaviours in polymers are thus dominated by interlinks of metastable states on different length scales. This concept successfully explains many experimental observations and provides a new way to connect different aspects of polymer physics.* Written by a leading scholar and industry expert* Presents new and cutting edge material encouraging innovation and future research* Connects hot topics and leading research in one concise volume
Author : David A. Porter
Publisher :
Page : 446 pages
File Size : 24,3 MB
Release : 1981
Category : Phase rule and equilibrium
ISBN : 9780412384004