Phase Transitions in Ferroelastic and Co-elastic Crystals


Book Description

This textbook describes the fundamental principles of structural phase transitions in materials in an easily understandable form, suitable for both undergraduate and graduate students.




Technical Abstract Bulletin


Book Description




Plasticity and Beyond


Book Description

The book presents the latest findings in experimental plasticity, crystal plasticity, phase transitions, advanced mathematical modeling of finite plasticity and multi-scale modeling. The associated algorithmic treatment is mainly based on finite element formulations for standard (local approach) as well as for non-standard (non-local approach) continua and for pure macroscopic as well as for directly coupled two-scale boundary value problems. Applications in the area of material design/processing are covered, ranging from grain boundary effects in polycrystals and phase transitions to deep-drawing of multiphase steels by directly taking into account random microstructures.







Advances in the Crystallographic and Microstructural Analysis of Charge Density Wave Modulated Crystals


Book Description

Modulated crystals have been intensively investigated over the past several years and it is now evident that an understanding of their crystallography and microstructure is fundamental to the elucidation of the physical properties and phase transitions in these materials. This book brings together for the first time the crystallographic descriptions and experimental methods for the structural and microstructural analysis of modulated crystals as described by well-known researchers in the various areas. The emphasis is on charge density wave modulations, and the detailed analysis of the prototypical NbTe4/TaTe4 system gives practical applications of the methods. Scanning Tunnelling Microscopy is a new technique providing significant new insights into atomic scale details of the modulations' structures and a chapter on this method is included.




Diffraction Analysis of the Microstructure of Materials


Book Description

Overview of diffraction methods applied to the analysis of the microstructure of materials. Since crystallite size and the presence of lattice defects have a decisive influence on the properties of many engineering materials, information about this microstructure is of vital importance in developing and assessing materials for practical applications. The most powerful and usually non-destructive evaluation techniques available are X-ray and neutron diffraction. The book details, among other things, diffraction-line broadening methods for determining crystallite size and atomic-scale strain due, e.g. to dislocations, and methods for the analysis of residual (macroscale) stress. The book assumes only a basic knowledge of solid-state physics and supplies readers sufficient information to apply the methods themselves.




Proceedings of 3rd Edition of International conference on Advanced Spectroscopy, Crystallography and Applications in Modern Chemistry 2018


Book Description

June 04-05, 2018 London, UK Key Topics : Chemical Crystallography, Advanced Crystallography, Crystallography Of Novel Materials, Spectroscopy, Spectroscopy Applications, Crystal Growth, Precession Electron Diffraction (PED), Nuclear Magnetic Resonance Crystallography (NMR Crystallography), Electron Crystallography, Recent Development In The X-Ray Studies, Crystallography Applications, Advances In Neutron Diffraction, Biological Structure Determination, Crystallography In Biology, Application Of Modern Chemistry,







Microstructure of Martensite


Book Description

Martensites are crystalline solids that display dazzling patterns at the microscopic scales. This microstructure gives rise to unusual macroscopic properties like the shape-memory effect. Starting with the crystalline structure, this book describes a theoretical framework for studying martensites and uses the theory to explain why these materials form microstructure. The macrostructure consequences of the microstructure are subsequently discussed. Complete with a piece of shape-memory wire and numerous examples from real materials, this book represents a successful case study in multiscale modeling, giving a clear understanding of the link between microstructure and macrostructure properties. Beautifully written, in a most clear and pedagogical manner, it holds appeal for a broad audience. On the one hand, it introduces modern modeling techniques to those trained in materials science, mechanics and physics and shows how these techniques can be used in real-world problems. On the other hand, it introduces physical phenomena to those trained in mathematics, and demonstrates how such phenomena give rise to interesting mathematical problems.




Technical Translations


Book Description