Phased Array Antennas with Optimized Element Patterns


Book Description

This authoritative resource provides you with a detailed description of ideal array element characteristics that help you estimate the quality of development of real-world phased array antennas. You find several approaches to optimum phased array design, allowing you to provide specified array gain in a specific region of scan, using a minimum number of expensive, controlled devices. Moreover, this practical book presents important numerical methods that you can use to model and optimize phased array structure to obtain the best array characteristics that the chosen structure can provide.From arrays with beam-forming networks, arrays of coupled dual-mode waveguides, and arrays with reactively loaded radiators, to waveguide arrays with protruding dielectric elements, and arrays with strip, disk, and wire structures, this comprehensive reference explains a wide range of essential topics to help you with work in this challenging area. The book is supported with over 165 illustrations and more than 566 equations.




Array and Phased Array Antenna Basics


Book Description

Reflecting a growing interest in phased array antenna systems, stemming from radar, radio astronomy, mobile communications and satellite broadcasting, Array and Phased Array Antenna Basics introduces the principles of array and phased array antennas. Packed with first-hand practical experience and worked-out examples, this is a valuable learning tool and reference source for those wishing to improve their understanding of basic array antenna systems without relying heavily on a thorough knowledge of electromagnetics or antenna theory. Features a general introduction to antennas and explains the array antenna principle through discussion of the physical characteristics rather than the theory Explores topics often not covered in antenna textbooks, such as active element pattern, array feeding, means of phase changing, array antenna characterisation, sequential rotation techniques and reactively loaded arrays Guides the reader through the necessary mathematics, allowing them to move onto specialist books on array and phased array antennas with a greater understanding of the topic Supported by a companion website on which instructors and lecturers can find electronic versions of the figures An ideal introduction for those without a background in antennas, this clear, concise volume will appeal to technicians, researchers and managers working in academia, government, telecommunications and radio astronomy. It will also be a valuable resource for professionals and postgraduates with some antenna knowledge.




Dielectric Resonator Antenna Handbook


Book Description

Today, more and more antenna engineers are viewing the Dielectric Resonator Antenna (DRA) as a preferable alternative to conventional low-gain designs because of several attractive features, including high radiation, light weight, small size and low profile. This practical resource presents complete, up-to-date details on DRAs in a single volume. The book provides professionals with clear guidance on the mode of operation and radiation behavior of DRAs, the main methods of excitation, and the major advances in DRA technology. This hands-on reference equips engineers with simple equations and graphs that help them rapidly design DRAs, without the need for complex analytical or numerical calculations. Numerous design examples are included to give practitioners a sense of the versatility that DRAs afford.




Conformal Array Antenna Theory and Design


Book Description

This is the first comprehensive treatment of conformal antenna arrays from an engineering perspective. While providing a thorough foundation in theory, the authors of this publication provide a wealth of hands-on instruction for practical analysis and design of conformal antenna arrays. Thus, you get the knowledge you need, alongside the practical know-how to design antennas that are integrated into such structures aircrafts or skyscrapers.




Advances in Array Optimization


Book Description

The need to develop technology and communication necessitates the design of flexible and high-capacity radiating systems in today's communication infrastructure. In this context, antenna arrays are the ideal solution and have been one of the priority research subjects of the science community dealing with electromagnetics from past to present. Optimization of an array may be performed in various ways such as the optimization of excitation, reflector structure, feed network, etc. depending on the array structure. This book is a collection of seven research studies focused on the optimization of array structures in classical phased array or time modulation, including radiator, reflector, feed network, and radiating element optimizations.




Microstrip Antennas


Book Description

"This anthology combines 15 years of microstrip antenna technology research into one significant volume and includes a special introductory tutorial by the co-editors. Covering theory, design and modeling techniques and methods, this source book is an excellent reference tool for engineers who want to become more familiar with microstrip antennas and microwave systems. Proven antenna designs, novel solutions to practical design problemsand relevant papers describing the theory of operation and analysis of microstrip antennas are contained within this convenient reference."




Mutual Coupling Between Antennas


Book Description

Mutual Coupling Between Antennas A guide to mutual coupling between various types of antennas in arrays such as wires, apertures and microstrip patches or antennas co-sited on platforms Mutual Coupling Between Antennas explores the theoretical underpinnings of mutual coupling, offers an up-to-date description of the physical effects of mutual coupling for a variety of antennas, and contains techniques for analysing and assessing its effects. The book puts the topic in historical context, presents an integral equation approach, includes the current techniques, measurement methods, and discusses the most recent advances in the field. With contributions from noted experts on the topic, the book reviews practical aspects of mutual coupling and examines applications that clearly demonstrate where the performance is impacted both positively and negatively. Mutual Coupling Between Antennas contains information on how mutual coupling can be analysed with a wide range of methods from direct computer software using discrete methods, to integral equations and Greens function methods as well as approximate asymptotic methods. This important text: Provides a theoretical background for understanding mutual coupling between various types of antennas Describes the interaction that occurs between antennas, both planned and unplanned Explores a key aspect of arrays in any wireless, radar or sensing system operating at radio frequencies Offers a groundbreaking book on antenna mutual coupling Written for antenna engineers, technical specialists, researchers and students, Mutual Coupling Between Antennas is the first book to examine mutual coupling between various types of antennas including wires, horns, microstrip patches, MIMO antennas, co-sited antennas and arrays in planar or conformal configurations.




Advances in FDTD Computational Electrodynamics


Book Description

Advances in photonics and nanotechnology have the potential to revolutionize humanitys ability to communicate and compute. To pursue these advances, it is mandatory to understand and properly model interactions of light with materials such as silicon and gold at the nanoscale, i.e., the span of a few tens of atoms laid side by side. These interactions are governed by the fundamental Maxwells equations of classical electrodynamics, supplemented by quantum electrodynamics. This book presents the current state-of-the-art in formulating and implementing computational models of these interactions. Maxwells equations are solved using the finite-difference time-domain (FDTD) technique, pioneered by the senior editor, whose prior Artech House books in this area are among the top ten most-cited in the history of engineering. This cutting-edge resource helps readers understand the latest developments in computational modeling of nanoscale optical microscopy and microchip lithography, as well as nanoscale plasmonics and biophotonics.




Radio Propagation in the Urban Scenario


Book Description

This practical book provides fundamentals of electromagnetic wave propagation and its unique application for the design of mobile wireless systems in complex urban environments. It supplies telecommunication engineers with the proper theoretical and practical tools to: plan radio coverage in cellular networks; design a radio link; predict connectivity in a wireless network and ensure that the system to be designed fulfills regulations on exposure of general public to electromagnetic fields. You’ll understand the latest propagation models and be equipped to address the challenges facing wireless propagation for the most recent 5G mobile systems, including how to cope with new propagation scenarios/frequencies in 5G wireless channel modelling. You’ll also find unique coverage of the problems of human exposure to electromagnetic fields and the corresponding international and national regulations, including the most recent ICNIRP guidelines. The book brings theory, algorithms, and applications into focus with some practical examples. Specific attention is devoted to laying the mathematical foundations of the asymptotic techniques that are presented; of the propagation over a flat and spherical Earth; and also of the propagation in complex environment in order to provide a cohesive exposition of the underlying principles. With its strong theoretical background on fundamentals of electromagnetic propagation along with an application-oriented approach, this is a must-have book for researchers working on applied electromagnetics and engineers working on wireless network planning at an advanced level. It is also rich in details and clear, making it an excellent textbook for advanced and graduate-level students.




Active Array Antennas for High Resolution Microwave Imaging Radar


Book Description

This book highlights the application of active array antennas in high-resolution microwave imaging radar systems. It introduces the basic principles, analytical methods, and performance parameters of active array antennas to achieve low profile, high efficiency, and lightweight. The book systematically elaborates the architecture, analysis, and engineering practice to achieve wideband, multi-band, multi-polarization, and common aperture in active array antennas. It explores hotspot technologies of digital array antennas, microwave photonic array antennas, and active packaging antennas. By presenting over 300 illustrations and diagrams, including schematic diagrams, block diagrams, relation diagrams, and breakdown drawings, the book enables a thorough understanding of the antenna array microsystem as the advanced phase of active array antennas and the direction of future R&D. The book is a good reference source for researchers and engineers interested in the engineering and implementation of microwave imaging radar systems and antenna technology.