Philosophy of Systems Biology


Book Description

The emergence of systems biology raises many fascinating questions: What does it mean to take a systems approach to problems in biology? To what extent is the use of mathematical and computational modelling changing the life sciences? How does the availability of big data influence research practices? What are the major challenges for biomedical research in the years to come? This book addresses such questions of relevance not only to philosophers and biologists but also to readers interested in the broader implications of systems biology for science and society. The book features reflections and original work by experts from across the disciplines including systems biologists, philosophers, and interdisciplinary scholars investigating the social and educational aspects of systems biology. In response to the same set of questions, the experts develop and defend their personal perspectives on the distinctive character of systems biology and the challenges that lie ahead. Readers are invited to engage with different views on the questions addressed, and may explore numerous themes relating to the philosophy of systems biology. This edited work will appeal to scholars and all levels, from undergraduates to researchers, and to those interested in a variety of scholarly approaches such as systems biology, mathematical and computational modelling, cell and molecular biology, genomics, systems theory, and of course, philosophy of biology.




Systems Biology


Book Description

Systems biology is a vigorous and expanding discipline, in many ways a successor to genomics and perhaps unprecedented in its combination of biology with a great many other sciences, from physics to ecology, from mathematics to medicine, and from philosophy to chemistry. Studying the philosophical foundations of systems biology may resolve a longer standing issue, i.e., the extent to which Biology is entitled to its own scientific foundations rather than being dominated by existing philosophies.* Answers the question of what distinguishes the living from the non-living* An in-depth look to a vigorous and expanding discipline, from molecule to system* Explores the region between individual components and the system




Control Theory and Systems Biology


Book Description

A survey of how engineering techniques from control and systems theory can be used to help biologists understand the behavior of cellular systems.




Philosophy of Biology


Book Description

An essential introduction to the philosophy of biology This is a concise, comprehensive, and accessible introduction to the philosophy of biology written by a leading authority on the subject. Geared to philosophers, biologists, and students of both, the book provides sophisticated and innovative coverage of the central topics and many of the latest developments in the field. Emphasizing connections between biological theories and other areas of philosophy, and carefully explaining both philosophical and biological terms, Peter Godfrey-Smith discusses the relation between philosophy and science; examines the role of laws, mechanistic explanation, and idealized models in biological theories; describes evolution by natural selection; and assesses attempts to extend Darwin's mechanism to explain changes in ideas, culture, and other phenomena. Further topics include functions and teleology, individuality and organisms, species, the tree of life, and human nature. The book closes with detailed, cutting-edge treatments of the evolution of cooperation, of information in biology, and of the role of communication in living systems at all scales. Authoritative and up-to-date, this is an essential guide for anyone interested in the important philosophical issues raised by the biological sciences.




The Cambridge Companion to the Philosophy of Biology


Book Description

The philosophy of biology is one of the most exciting new areas in the field of philosophy and one that is attracting much attention from working scientists. This Companion, edited by two of the founders of the field, includes newly commissioned essays by senior scholars and up-and-coming younger scholars who collectively examine the main areas of the subject - the nature of evolutionary theory, classification, teleology and function, ecology, and the problematic relationship between biology and religion, among other topics. Up-to-date and comprehensive in its coverage, this unique volume will be of interest not only to professional philosophers but also to students in the humanities and researchers in the life sciences and related areas of inquiry.




Biological Autonomy


Book Description

Since Darwin, Biology has been framed on the idea of evolution by natural selection, which has profoundly influenced the scientific and philosophical comprehension of biological phenomena and of our place in Nature. This book argues that contemporary biology should progress towards and revolve around an even more fundamental idea, that of autonomy. Biological autonomy describes living organisms as organised systems, which are able to self-produce and self-maintain as integrated entities, to establish their own goals and norms, and to promote the conditions of their existence through their interactions with the environment. Topics covered in this book include organisation and biological emergence, organisms, agency, levels of autonomy, cognition, and a look at the historical dimension of autonomy. The current development of scientific investigations on autonomous organisation calls for a theoretical and philosophical analysis. This can contribute to the elaboration of an original understanding of life - including human life - on Earth, opening new perspectives and enabling fecund interactions with other existing theories and approaches. This book takes up the challenge.




Case Studies in Systems Biology


Book Description

This book provides case studies that can be used in Systems Biology related classes. Each case study has the same structure which answers the following questions: What is the biological problem and why is it interesting? What are the relevant details with regard to cell physiology and molecular mechanisms? How are the details put together into a mathematical model? How is the model analyzed and simulated? What are the results of the model? How do they compare to the known facts of the cell physiology? Does the model make predictions? What can be done to extend the model? The book presents a summary of results and references to more relevant sources. The volume contains the classic collection of topics and studies that are well established yet novel in the systems biology field.




From Systems Biology to Systems Medicine


Book Description

Throughout most of the twentieth century, the biomedical model dominated healthcare. However, the biomedical model had its critics, who proposed alternative models to replace it. Eventually, biomedicine became fragmented at its foundations with a variety of approaches to its nature and practice. Medicine's current response to this fragmentation is to combine these disparate approaches into a single system--systems medicine. In the present book, I examine the shift, during the postgenomics era, from the biomedical model to systems medicine vis-à-vis systems biology, as well as the challenges facing systems medicine's implementation in the twenty-first century. The main goal of the present book is to provide a disciplinary framework for examining the rise of systems medicine, especially in terms of the incorporation of systems biology into the biomedical model. To realize that goal, the following questions are addressed. What is a disciplinary framework? And, why is this framework important for understanding systems biology and medicine? Briefly, a disciplinary framework represents the relational structure among disparate disciplines that support and ground a discipline and its corpus. For traditional biology and medicine, that framework consists of various disciplines within the biological and biomedical sciences, including physiology, neuroscience, pathology, and epidemiology--to name a few. For the present purpose, systems biology within the last several decades is reshaping the disciplinary framework of the biological and biomedical sciences, which is also responsible for the emergence of systems medicine. In addition, the challenges facing systems medicine, especially its operationalization and implementation with respect to medical education and practice, as well as research, are also explored.




Systems Biology II


Book Description




Synthetic Biology


Book Description

Synthetic Biology is already an object of intensive debate. However, to a great extent the discussion to date has been concerned with fundamental ethical, religious and philosophical questions. By contrast, based on an investigation of the field’s scientific and technological character, this book focuses on new functionalities provided by synthetic biology and explores the associated opportunities and risks. Following an introduction to the subject and a discussion of the most central paradigms and methodologies, the book provides an overview of the structure of this field of science and technology. It informs the reader about the current stage of development, as well as topical problems and potential opportunities in important fields of application. But not only the science itself is in focus. In order to investigate its broader impact, ecological as well as ethical implications will be considered, paving the way for a discussion of responsibilities in the context of a field at a transitional crossroads between basic and applied science. In closing, the requirements for a suitable regulatory framework are discussed. The book is intended as a source of information and orientation for researchers, students and practitioners in the natural sciences and technology assessment; for members of scientific and technological, governmental and funding institutions; and for members of the general public interested in essential information on the current status, prospects and implications of synthetic biology.