Phonon Thermal Transport in Silicon-Based Nanomaterials


Book Description

In this Brief, authors introduce the advance in theoretical and experimental techniques for determining the thermal conductivity in nanomaterials, and focus on review of their recent theoretical studies on the thermal properties of silicon–based nanomaterials, such as zero–dimensional silicon nanoclusters, one–dimensional silicon nanowires, and graphenelike two–dimensional silicene. The specific subject matters covered include: size effect of thermal stability and phonon thermal transport in spherical silicon nanoclusters, surface effects of phonon thermal transport in silicon nanowires, and defects effects of phonon thermal transport in silicene. The results obtained are supplemented by numerical calculations, presented as tables and figures. The potential applications of these findings in nanoelectrics and thermoelectric energy conversion are also discussed. In this regard, this Brief represents an authoritative, systematic, and detailed description of the current status of phonon thermal transport in silicon–based nanomaterials. This Brief should be a highly valuable reference for young scientists and postgraduate students active in the fields of nanoscale thermal transport and silicon-based nanomaterials.




Thermal Transport in Carbon-Based Nanomaterials


Book Description

Thermal Transport in Carbon-Based Nanomaterials describes the thermal properties of various carbon nanomaterials and then examines their applications in thermal management and renewable energy. Carbon nanomaterials include: one-dimensional (1D) structures, like nanotubes; two-dimensional (2D) crystal lattice with only one-atom-thick planar sheets, like graphenes; composites based on carbon nanotube or graphene, and diamond nanowires and thin films. In the past two decades, rapid developments in the synthesis and processing of carbon-based nanomaterials have created a great desire among scientists to gain a greater understanding of thermal transport in these materials. Thermal properties in nanomaterials differ significantly from those in bulk materials because the characteristic length scales associated with the heat carriers, phonons, are comparable to the characteristic length. Carbon nanomaterials with high thermal conductivity can be applied in heat dissipation. This looks set to make a significant impact on human life and, with numerous commercial developments emerging, will become a major academic topic over the coming years. This authoritative and comprehensive book will be of great use to both the existing scientific community in this field, as well as for those who wish to enter it. - Includes coverage of the most important and commonly adopted computational and experimental methods to analyze thermal properties in carbon nanomaterials - Contains information about the growth of carbon nanomaterials, their thermal properties, and strategies to control thermal properties and applications, allowing readers to assess how to use each material most efficiently - Offers a comprehensive overview of the theoretical background behind thermal transport in carbon nanomaterials




21st Century Nanoscience


Book Description

This 21st Century Nanoscience Handbook will be the most comprehensive, up-to-date large reference work for the field of nanoscience. Handbook of Nanophysics, by the same editor, published in the fall of 2010, was embraced as the first comprehensive reference to consider both fundamental and applied aspects of nanophysics. This follow-up project has been conceived as a necessary expansion and full update that considers the significant advances made in the field since 2010. It goes well beyond the physics as warranted by recent developments in the field. Key Features: Provides the most comprehensive, up-to-date large reference work for the field. Chapters written by international experts in the field. Emphasises presentation and real results and applications. This handbook distinguishes itself from other works by its breadth of coverage, readability and timely topics. The intended readership is very broad, from students and instructors to engineers, physicists, chemists, biologists, biomedical researchers, industry professionals, governmental scientists, and others whose work is impacted by nanotechnology. It will be an indispensable resource in academic, government, and industry libraries worldwide. The fields impacted by nanoscience extend from materials science and engineering to biotechnology, biomedical engineering, medicine, electrical engineering, pharmaceutical science, computer technology, aerospace engineering, mechanical engineering, food science, and beyond.




Thermal Behaviour and Applications of Carbon-Based Nanomaterials


Book Description

Nanocomposites with Carbon-based nanofillers (e.g., carbon nanotubes, graphene sheets and nanoribbons etc.) form a class of extremely promising materials for thermal applications. In addition to exceptional material properties, the thermal conductivity of the carbon-based nanofillers can be higher than any other known material, suggesting the possibility to engineer nanocomposites that are both lightweight and durable, and have unique thermal properties. This potential is hindered by thermal boundary resistance (TBR) to heat transfer at the interface between nanoinclusions and the matrix, and by the difficulty to control the dispersion pattern and the orientation of the nanoinclusions. Thermal Behaviour and Applications of Carbon-Based Nanomaterials: Theory, Methods and Applications explores heat transfer in nanocomposites, discusses techniques predicting and modeling the thermal behavior of carbon nanocomposites at different scales, and methods for engineering applications of nanofluidics and heat transfer. The chapters combine theoretical explanation, experimental methods and computational analysis to show how carbon-based nanomaterials are being used to optimise heat transfer. The applications-focused emphasis of this book makes it a valuable resource for materials scientists and engineers who want to learn more about nanoscale heat transfer. - Offers an informed overview of how carbon nanomaterials are currently used for nanoscale heat transfer - Discusses the major applications of carbon nanomaterials for heat transfer in a variety of industry sectors - Details the major computational methods for the analysis of the thermal properties of carbon nanomaterials




21st Century Nanoscience – A Handbook


Book Description

This 21st Century Nanoscience Handbook will be the most comprehensive, up-to-date large reference work for the field of nanoscience. Handbook of Nanophysics, by the same editor, published in the fall of 2010, embraced as the first comprehensive reference to consider both fundamental and applied aspects of nanophysics. This follow-up project has been conceived as a necessary expansion and full update that considers the significant advances made in the field since 2010. It goes well beyond the physics as warranted by recent developments in the field. The fifth volume in a ten-volume set covers exotic nanostructures and quantum systems. Key Features: Provides the most comprehensive, up-to-date large reference work for the field. Chapters written by international experts in the field. Emphasises presentation and real results and applications. This handbook distinguishes itself from other works by its breadth of coverage, readability and timely topics. The intended readership is very broad, from students and instructors to engineers, physicists, chemists, biologists, biomedical researchers, industry professionals, governmental scientists, and others whose work is impacted by nanotechnology. It will be an indispensable resource in academic, government, and industry libraries worldwide. The fields impacted by nanoscience extend from materials science and engineering to biotechnology, biomedical engineering, medicine, electrical engineering, pharmaceutical science, computer technology, aerospace engineering, mechanical engineering, food science, and beyond.




Two-dimensional Materials


Book Description

There are only a few discoveries and new technologies in materials science that have the potential to dramatically alter and revolutionize our material world. Discovery of two-dimensional (2D) materials, the thinnest form of materials to ever occur in nature, is one of them. After isolation of graphene from graphite in 2004, a whole other class of atomically thin materials, dominated by surface effects and showing completely unexpected and extraordinary properties, has been created. This book provides a comprehensive view and state-of-the-art knowledge about 2D materials such as graphene, hexagonal boron nitride (h-BN), transition metal dichalcogenides (TMD) and so on. It consists of 11 chapters contributed by a team of experts in this exciting field and provides latest synthesis techniques of 2D materials, characterization and their potential applications in energy conservation, electronics, optoelectronics and biotechnology.




Modeling, Characterization, and Production of Nanomaterials


Book Description

Nano-scale materials have unique electronic, optical, and chemical properties that make them attractive for a new generation of devices. In the second edition of Modeling, Characterization, and Production of Nanomaterials: Electronics, Photonics, and Energy Applications, leading experts review the latest advances in research in the understanding, prediction, and methods of production of current and emerging nanomaterials for key applications. The chapters in the first half of the book cover applications of different modeling techniques, such as Green's function-based multiscale modeling and density functional theory, to simulate nanomaterials and their structures, properties, and devices. The chapters in the second half describe the characterization of nanomaterials using advanced material characterization techniques, such as high-resolution electron microscopy, near-field scanning microwave microscopy, confocal micro-Raman spectroscopy, thermal analysis of nanoparticles, and applications of nanomaterials in areas such as electronics, solar energy, catalysis, and sensing. The second edition includes emerging relevant nanomaterials, applications, and updated modeling and characterization techniques and new understanding of nanomaterials. - Covers the close connection between modeling and experimental methods for studying a wide range of nanomaterials and nanostructures - Focuses on practical applications and industry needs through a solid outlining of the theoretical background - Includes emerging nanomaterials and their applications in spintronics and sensing




Computational Modelling of Nanomaterials


Book Description

Due to their small size and their dependence on very fast phenomena, nanomaterials are ideal systems for computational modelling. This book provides an overview of various nanosystems classified by their dimensions: 0D (nanoparticles, QDs, etc.), 1D (nanowires, nanotubes), 2D (thin films, graphene, etc.), 3D (nanostructured bulk materials, devices). Fractal dimensions, such as nanoparticle agglomerates, percolating films and combinations of materials of different dimensionalities are also covered (e.g. epitaxial decoration of nanowires by nanoparticles, i.e. 0D+1D nanomaterials). For each class, the focus will be on growth, structure, and physical/chemical properties. The book presents a broad range of techniques, including density functional theory, molecular dynamics, non-equilibrium molecular dynamics, finite element modelling (FEM), numerical modelling and meso-scale modelling. The focus is on each method's relevance and suitability for the study of materials and phenomena in the nanoscale. This book is an important resource for understanding the mechanisms behind basic properties of nanomaterials, and the major techniques for computational modelling of nanomaterials. - Explores the major modelling techniques used for different classes of nanomaterial - Assesses the best modelling technique to use for each different type of nanomaterials - Discusses the challenges of using certain modelling techniques with specific nanomaterials




The Physics of Phonons


Book Description

There have been few books devoted to the study of phonons, a major area of condensed matter physics. The Physics of Phonons is a comprehensive theoretical discussion of the most important topics, including some topics not previously presented in book form. Although primarily theoretical in approach, the author refers to experimental results wherever possible, ensuring an ideal book for both experimental and theoretical researchers. The author begins with an introduction to crystal symmetry and continues with a discussion of lattice dynamics in the harmonic approximation, including the traditional phenomenological approach and the more recent ab initio approach, detailed for the first time in this book. A discussion of anharmonicity is followed by the theory of lattice thermal conductivity, presented at a level far beyond that available in any other book. The chapter on phonon interactions is likewise more comprehensive than any similar discussion elsewhere. The sections on phonons in superlattices, impure and mixed crystals, quasicrystals, phonon spectroscopy, Kapitza resistance, and quantum evaporation also contain material appearing in book form for the first time. The book is complemented by numerous diagrams that aid understanding and is comprehensively referenced for further study. With its unprecedented wide coverage of the field, The Physics of Phonons will be indispensable to all postgraduates, advanced undergraduates, and researchers working on condensed matter physics.




Micro and Nano Thermal Transport


Book Description

Micro and Nano Thermal Transport Research: Characterization, Measurement and Mechanism is a complete and reliable reference on thermal measurement methods and mechanisms of micro and nanoscale materials. The book has a strong focus on applications and simulation, providing clear guidance on how to measure thermal properties in a systematic way. Sections cover the fundamentals of thermal properties before introducing tools to help readers identify and analyze thermal characteristics of these materials. The thermal transport properties are then further explored by means of simulation which reflect the internal mechanisms used to generate such thermal properties. Readers will gain a clear understanding of thermophysical measurement methods and the representative thermal transport characteristics of micro/nanoscale materials with different structures and are guided through a decision-making process to choose the most effective method to master thermal analysis. The book is particularly suitable for those engaged in the design and development of thermal property measurement instruments, as well as researchers of thermal transport at the micro and nanoscale. - Includes a variety of measurement methods and thermal transport characteristics of micro and nanoscale materials under different structures - Guides the reader through the decision-making process to ensure the best thermal analysis method is selected for their setting - Contains experiments and simulations throughout that help apply understanding to practice