Phosphate Solubilizing Microorganisms


Book Description

This book provides a comprehensive description of phosphate solubilizing microorganisms and highlights methods for the use of microphos in different crop production systems. The focus is on understanding both the basic and applied aspects of phosphate solubilizing microorganisms and how phosphorus-deficient soils can be transformed into phosphorus-rich ones by applying phosphate solubilizing microorganisms. The interaction of rhizosphere phosphate solubilizing microorganisms and environmental variables, as well as their importance in the production of crops such as legumes, cereals, vegetables etc. are discussed and considered. The use of cold-tolerant phosphate solubilizing microorganisms to enhance crop productivity in mountainous regions is examined, as are the ecological diversity and biotechnological implications of phosphate solubilizing microorganisms. Lastly, the role of phosphate solubilizing microorganisms in aerobic rice cultivation is highlighted. This volume offers a broad overview of plant disease management using phosphate solubilizing microbes and presents strategies for the management of cultivated crops. It will therefore be of special interest to both academics and professionals working in the fields of microbiology, soil microbiology, biotechnology and agronomy, as well as the plant protection sciences. This timely reference book provides an essential and comprehensive source of material, as it includes recent findings on phosphate solubilizing microorganisms and their role in crop production.




Biofertilizers


Book Description

Great attention has been paid to reduce the use of conventional chemical fertilizers harming living beings through food chain supplements from the soil environment. Therefore, it is necessary to develop alternative sustainable fertilizers to enhance soil sustainability and agriculture productivity. Biofertilizers are the substance that contains microorganisms (bacteria, algae, and fungi) living or latent cells that can enrich the soil quality with nitrogen, phosphorous, potassium, organic matter, etc. They are a cost-effective, biodegradable, and renewable source of plant nutrients/supplements to improve the soil-health properties. Biofertilizers emerge as an attractive alternative to chemical fertilizers, and as a promising cost-effective technology for eco-friendly agriculture and a sustainable environment that holds microorganisms which enhance the soil nutrients' solubility leading a raise in its fertility, stimulates crop growth and healthy food safety. This book provides in-depth knowledge about history and fundamentals to advances biofertilizers, including latest reviews, challenges, and future perspectives. It covers fabrication approaches, and various types of biofertilizers and their applications in agriculture, environment, forestry and industrial sectors. Also, organic farming, quality control, quality assurance, food safety and case-studies of biofertilizers are briefly discussed. Biofertilizers' physical properties, affecting factors, impact, and industry profiles in the market are well addressed. This book is an essential guide for farmers, agrochemists, environmental engineers, scientists, students, and faculty who would like to understand the science behind the sustainable fertilizers, soil chemistry and agroecology.




First International Meeting on Microbial Phosphate Solubilization


Book Description

In 2002, sixty international specialists met to discuss problems of high P-unavailability as a soil nutrient for crops, and the hazards of increased phosphate input to aquatic habitats from industrial and mining activities, sewage disposal, detergents, and other sources. Among the presentations were updated solutions to enhance P-uptake by plants, bioremediation potential in the rehabilitation of ecosystems, taxonomic characterization interactions with mycorrizae, the physiological and molecular basis of PSM, and more.




Microbial Strategies for Crop Improvement


Book Description

With an ever-increasing human population, the demand placed upon the agriculture sector to supply more food is one of the greatest challenges for the agrarian community. In order to meet this challenge, environmentally unfriendly agroch- icals have played a key role in the green revolution and are even today commonly recommended to circumvent nutrient de?ciencies of the soils. The use of ag- chemicals is, though, a major factor for improvement of plant production; it causes a profound deteriorating effect on soil health (soil fertility) and in turn negatively affects the productivity and sustainability of crops. Concern over disturbance to the microbial diversity and consequently soil fertility (as these microbes are involved in biogeochemical processes), as well as economic constraints, have prompted fun- mental and applied research to look for new agro-biotechnologies that can ensure competitive yields by providing suf?ciently not only essential nutrients to the plants but also help to protect the health of soils by mitigating the toxic effects of certain pollutants. In this regard, the role of naturally abundant yet functionally fully unexplored microorganisms such as biofertilizers assume a special signi?cance in the context of supplementing plant nutrients, cost and environmental impact under both conventional practices and derelict environments. Therefore, current devel- ments in sustainability involve a rational exploitation of soil microbial communities and the use of inexpensive, though less bio-available, sources of plant nutrients, which may be made available to plants by microbially-mediated processes.




Potassium Solubilizing Microorganisms for Sustainable Agriculture


Book Description

The potassium solubilizing microorganisms (KSMs) are a rhizospheric microorganism which solubilizes the insoluble potassium (K) to soluble forms of K for plant growth and yield. K-solubilization is carried out by a large number of saprophytic bacteria (Bacillus mucilaginosus, B. edaphicus, B. circulans, Acidothiobacillus ferrooxidans, Paenibacillus spp.) and fungal strains (Aspergillus spp. and Aspergillus terreus). Major amounts of K containing minerals (muscovite, orthoclase, biotite, feldspar, illite, mica) are present in the soil as a fixed form which is not directly taken up by the plant. Nowadays most of the farmers use injudicious application of chemical fertilizers for achieving maximum productivity. However, the KSMs are most important microorganisms for solubilizing fixed form of K in soil system. The KSMs are an indigenous rhizospheric microorganism which show effective interaction between soil-plant systems. The main mechanism of KSMs is acidolysis, chelation, exchange reactions, complexolysis and production of organic acid. According to the literature, currently negligible use of potassium fertilizer as chemical form has been recorded in agriculture for enhancing crop yield. Most of the farmers use only nitrogen and phosphorus and not the K fertilizer due to unawareness that the problem of K deficiency occurs in rhizospheric soils. The K fertilizer is also costly as compared to other chemical fertilizers.




Rhizotrophs: Plant Growth Promotion to Bioremediation


Book Description

This book describes the contributions of rhizotrophs – microbes associated with the parts of plants below ground – in sustainable agriculture. It covers a broad range of aspects, from plant growth promotion to bioremediation. It highlights the role of bacteria, actinomycetes, mycorrhizal fungi, and most interestingly protists, in the sustainability of agriculture. Further, it addresses in detail the involvement of quorum sensing signals, and the role of hydrolytic enzymes and bacteriocin in combating the phytopathogen. The book sheds light on the interaction of rhizotrophs in rhizosphere and how these microbes support plants growing under adverse stress conditions such as saline, drought or heavy-metals contamination. Challenges faced in the field application of these microbes, strategies for modifying the rhizosphere to improve crop yield, and the latest advances in rhizobial bioformulations are also discussed. Overall, the book provides comprehensive information on how various microbes can be used to improve the sustainability of agriculture without disturbing the environment.




Probiotics in Agroecosystem


Book Description

This book focuses on food security in sustainable agriculture and nutrient management. The study of plant probiotic microbes’ synergism using existing techniques has greatly improved our grasp of the structure and functioning of the plant microbiome. However, the function of plant probiotic microbes and their relation to plants’ health in the context of food security, soil nutrient management, human and plant health are largely unexplored. Compared to human probiotics, diverse types and millions of microbiota inhabit plants, forming multifaceted and complicated ecological societies that stimulate plant growth and health through their combined metabolic activities. From the perspective of sustainable cropping systems, observing plant probiotics can provide insights on how to stimulate and maintain plant productivity, along with host stress tolerance and recycling of soil nutrients. This book combines reviews and original research articles to highlight the latest advances in plant probiotics, their specificity, diversity, function, as well as plant microbiome management to improve plant growth and productivity, nutrient management and human health.




Endophytes: Crop Productivity and Protection


Book Description

This book reviews the latest developments in our understanding of microbial endophytes and their potential applications in enhancing productivity and disease protection. It covers all the latest discoveries regarding endophytes, their interactions with plants and application in agricultural productivity and protection. Our understanding of endophytes has increased exponentially in recent decades. These microbes, such as fungi, bacteria, and actinobacteria, establish a symbiotic or parasitic association with plants. A better understanding of endophytic microorganisms may help to elucidate their functions and potential role in developing sustainable systems of crop production and improved protection against biotic stresses. Endophytes play a vital role in plant growth and health promotion. Endophytic bacteria are of agrobiological interest because they create host-endophyte relationships, which can open exciting prospects for newer biotechnological applications. Endophytes have also proven to be a beneficial and sustainable alternative to agrochemicals due to their role in the biocontrol of pests and diseases. Further, endophytes are essential to the production of several secondary metabolites in grasses, in the process of gummosis in trees, and the production of useful metabolites such as alkaloids, pestaloside, cryptocandin, enfumafungin, subglutinols, etc. for the host plant. They are also involved in the production of enzymes, biosurfactants, biocontrol agents and plant growth promoters. As such, it is imperative that we explore these products’ industrial applications in the fields of biotechnology, pharmacy and agriculture. This volume will offers a valuable guidance for botanists, microbiologists, biotechnologists, molecular biologists, environmentalists, policymakers, conservationists, and those working for the protection of plant species of agricultural and medicinal importance.




Plant-Microbe Interactions


Book Description

This manual details the techniques involved in the study of plant microbe interactions (PMI). Covering a wide range of basic and advanced techniques associated with research on biological nitrogen fixation, microbe-mediated plant nutrient use efficiency, the biological control of plant diseases and pests such as nematodes, it will appeal to postgraduate students, research scholars and postdoctoral fellows, as well as teachers from various fields, including pathology, entomology and agronomy. It consists of five broad sections featuring different units. Information panels at the beginning of each unit present essential knowledge as well as advances in a particular topic. The manual can also serve as a textbook for undergraduate courses like Techniques for Plant-Microbe Interactions; Biological Control of Plant Diseases; and Nutrient Use Efficiency. Providing basic insights and working protocols from all related disciplines, this unique laboratory manual is a valuable resource for researchers interested in investigating PMI.




Bacteria in Agrobiology: Crop Ecosystems


Book Description

The future of agriculture strongly depends on our ability to enhance productivity without sacrificing long-term production potential. An ecologically and economically sustainable strategy is the application of microorganisms, such as the diverse bacterial species of plant growth promoting bacteria (PGPB). The use of these bio-resources for the enhancement of crop productivity is gaining worldwide importance. Bacteria in Agrobiology: Crop Ecosystems describes the beneficial role of plant growth promoting bacteria with special emphasis on oil yielding crops, cereals, fruits and vegetables. Chapters present studies on various aspects of bacteria-plant interactions, soil-borne and seed-borne diseases associated with food crops such as rice, sesame, peanuts, and horticultural crops. Further reviews describe technologies to produce inoculants, the biocontrol of post harvest pathogens as a suitable alternative to agrochemicals, and the restoration of degraded soils.