Photocatalytic Functional Materials for Environmental Remediation


Book Description

A comprehensive volume on photocatalytic functional materials for environmental remediation As the need for removing large amounts of pollution and contamination in air, soil, and water grows, emerging technologies in the field of environmental remediation are of increasing importance. The use of photocatalysis—a green technology with enormous potential to resolve the issues related to environmental pollution—breaks down toxic organic compounds to mineralized products such as carbon dioxide and water. Due to their high performance, ease of fabrication, long-term stability, and low manufacturing costs, photofunctional materials constructed from nanocomposite materials hold great potential for environmental remediation. Photocatalytic Functional Materials for Environmental Remediation examines the development of high performance photofunctional materials for the treatment of environmental pollutants. This timely volume assembles and reviews a broad range of ideas from leading experts in fields of chemistry, physics, nanotechnology, materials science, and engineering. Precise, up-to-date chapters cover both the fundamentals and applications of photocatalytic functional materials. Semiconductor-metal nanocomposites, layered double hydroxides, metal-organic frameworks, polymer nanocomposites, and other photofunctional materials are examined in applications such as carbon dioxide reduction and organic pollutant degradation. Providing interdisciplinary focus to green technology materials for the treatment of environmental pollutants, this important work: Provides comprehensive coverage of various photocatalytic materials for environmental remediation useful for researchers and developers Encompasses both fundamental concepts and applied technology in the field Focuses on novel design and application of photocatalytic materials used for the removal of environmental contaminates and pollution Offers in-depth examination of highly topical green-technology solutions Presents an interdisciplinary approach to environmental remediation Photocatalytic Functional Materials for Environmental Remediation is a vital resource for researchers, engineers, and graduate students in the multi-disciplinary areas of chemistry, physics, nanotechnology, environmental science, materials science, and engineering related to photocatalytic environmental remediation.




Photocatalytic Functional Materials for Environmental Remediation


Book Description

A comprehensive volume on photocatalytic functional materials for environmental remediation As the need for removing large amounts of pollution and contamination in air, soil, and water grows, emerging technologies in the field of environmental remediation are of increasing importance. The use of photocatalysis—a green technology with enormous potential to resolve the issues related to environmental pollution—breaks down toxic organic compounds to mineralized products such as carbon dioxide and water. Due to their high performance, ease of fabrication, long-term stability, and low manufacturing costs, photofunctional materials constructed from nanocomposite materials hold great potential for environmental remediation. Photocatalytic Functional Materials for Environmental Remediation examines the development of high performance photofunctional materials for the treatment of environmental pollutants. This timely volume assembles and reviews a broad range of ideas from leading experts in fields of chemistry, physics, nanotechnology, materials science, and engineering. Precise, up-to-date chapters cover both the fundamentals and applications of photocatalytic functional materials. Semiconductor-metal nanocomposites, layered double hydroxides, metal-organic frameworks, polymer nanocomposites, and other photofunctional materials are examined in applications such as carbon dioxide reduction and organic pollutant degradation. Providing interdisciplinary focus to green technology materials for the treatment of environmental pollutants, this important work: Provides comprehensive coverage of various photocatalytic materials for environmental remediation useful for researchers and developers Encompasses both fundamental concepts and applied technology in the field Focuses on novel design and application of photocatalytic materials used for the removal of environmental contaminates and pollution Offers in-depth examination of highly topical green-technology solutions Presents an interdisciplinary approach to environmental remediation Photocatalytic Functional Materials for Environmental Remediation is a vital resource for researchers, engineers, and graduate students in the multi-disciplinary areas of chemistry, physics, nanotechnology, environmental science, materials science, and engineering related to photocatalytic environmental remediation.




Functional Hybrid Nanomaterials for Environmental Remediation


Book Description

Functional and structural nanomaterials are emerging materials that display interesting physical and chemical properties because of their size and surface area to volume ratio. Applications for these materials include uses in removing pollutants from the environment. Looking at the current state-of-the-art as well as future trends in the use of nanomaterials for tackling environmental issues this book covers everything from the synthesis and characterisation of these materials to their use in the removal of specific contaminants. Functional Hybrid Nanomaterials for Environmental Remediation is a useful resource both for nanomaterial scientists interested in the real world application of hybrid nanomaterials and for environmental chemists and environmental engineers interested in novel materials for environmental remediation.




Solar Photocatalysis for Environmental Remediation


Book Description

The book presents a review of research and pilot-scale efforts undertaken by scientists all over the world towards utilization of solar energy for environmental remediation. It gives a complete account of the solar photocatalytic degradation of pollutants present in wastewater and atmosphere and also discusses the solid-phase photocatalytic degradation of plastics in the form of composite. The text further describes the hydrogen generation by photocatalytic water splitting. Various solar collectors and reactors used especially for environmental remediation are also elucidated. Please note: This volume is Co-published with The Energy and Resources Institute Press, New Delhi. Taylor & Francis does not sell or distribute the Hardback in India, Pakistan, Nepal, Bhutan, Bangladesh and Sri Lanka




Nanostructured Photocatalysts


Book Description

Nanostructured Photocatalysts: From Materials to Applications in Solar Fuels and Environmental Remediation addresses the different properties of nanomaterials-based heterogeneous photocatalysis. Heterogeneous nanostructured photocatalysis represents an interesting and viable technique to address issues of climate change and global energy supply. Sustainable hydrogen (H2) fuel production from water via semiconductor photocatalysis, driven by solar energy, is regarded as a viable and sustainable solution to address increasing energy and environmental issues. Similarly, photocatalytic reduction of CO2 with water for the production of hydrocarbons could also be a viable solution. Sections cover band gap tuning, high surface area, the short diffusion path of carriers, and more. - Introduces the utilization of nanostructured materials in heterogeneous photocatalysis for hydrogen fuel production via water splitting - Explains preparation techniques for different nanomaterials and hybrid nanocomposites, enabling improved sunlight absorption efficiency and enhanced charge separation - Assesses the challenges that need to be addressed before this technology can be practically implemented, particularly of identifying cost-effective nanophotocatalysts




Nanotechnology in Environmental Science, 2 Volumes


Book Description

An overview of the current state of nanotechnology-based devices with applications in environmental science, focusing on nanomaterials and polymer nanocomposites. The handbook pays special attention to those nanotechnology-based approaches that promise easier, faster and cheaper processes in environmental monitoring and remediation. Furthermore, it presents up-to-date information on the economics, toxicity and regulations related to nanotechnology in detail. The book closes with a look at the role of nanotechnology for a green and sustainable future. With its coverage of existing and soon-to-be-realized devices this is an indispensable reference for both academic and corporate R&D.




Design of Advanced Photocatalytic Materials for Energy and Environmental Applications


Book Description

Research for the development of more efficient photocatalysts has experienced an almost exponential growth since its popularization in early 1970’s. Despite the advantages of the widely used TiO2, the yield of the conversion of sun power into chemical energy that can be achieved with this material is limited prompting the research and development of a number of structural, morphological and chemical modifications of TiO2 , as well as a number of novel photocatalysts with very different composition. Design of Advanced Photocatalytic Materials for Energy and Environmental Applications provides a systematic account of the current understanding of the relationships between the physicochemical properties of the catalysts and photoactivity. The already long list of photocatalysts phases and their modifications is increasing day by day. By approaching this field from a material sciences angle, an integrated view allows readers to consider the diversity of photocatalysts globally and in connection with other technologies. Design of Advanced Photocatalytic Materials for Energy and Environmental Applications provides a valuable road-map, outlining the common principles lying behind the diversity of materials, but also delimiting the imprecise border between the contrasted results and the most speculative studies. This broad approach makes it ideal for specialist but also for engineers, researchers and students in related fields.




Nano-Materials as Photocatalysts for Degradation of Environmental Pollutants


Book Description

Nano-Materials as Photocatalysts for Degradation of Environmental Pollutants: Challenges and Possibilities contains both practical and theoretical aspects of environmental management using the processes of photodegradation and various heterogeneous catalysts. The book's main focus is on the degradation of harmful pollutants, such as petrochemicals, crude oils, dyes, xenobiotic pharmaceutical waste, endocrine disrupting compounds, and other common pollutants. Chapters incorporate both theoretical and practical aspects. This book is useful for undergraduate or university students, teachers and researchers, especially those working in areas of photocatalysis through heterogeneous catalysts. The primary audience for this book includes Chemical Engineers, Environmental Engineers and scientists, scholars working on the management of hazardous waste, scientists working in fields of materials science, and Civil Engineers working on wastewater treatment. - Reviews recent trends in the photodegradation of organic pollutants - Offers a bibliometric analysis of photocatalysis for environmental abatement - Includes many degradation mechanisms of organic pollutants using various catalysts - Includes examples on the degradation of organic pollutants from various sources, e.g., pharmaceuticals, dyes, pesticides, etc. - Discusses the effect of nanocatalysts on soil, plants and the ecosystem




Nanophotocatalysis and Environmental Applications


Book Description

This book serves the environmentalists to track the development of photocatalytic materials and technology in the present context and to explore future trends. Photocatalysis is the most influential greener technology being researched, developed and adopted for the treatment of wastewater. The technological advancements in the area of smart hybrid photocatalytic materials have gained momentum in the present era. The rational designing of photocatalytic materials with a multi-pronged approach opens a new chapter for environmental detoxification. Other important aspects relate to the transfer of this nanostructured photocatalytic technology to real backdrops. Harnessing natural solar energy for energy and environmental roles is another crucial criterion in designing photocatalysts.




Handbook of Smart Photocatalytic Materials


Book Description

Handbook of Smart Photocatalytic Materials: Environment, Energy, Emerging Applications and Sustainability provides an intriguing and useful guide to catalysis and materials. The handbook covers applications of smart photocatalytic materials for energy environmental protection and emerging fields. Also covered is the safety risk of Smart Photocatalytic Materials, commercialization, their fate and transportation in the environment, and sustainability. This volume provides a valuable roadmap, outlining common principles behind their use. Every chapter of this volume presents state-of-the-art knowledge on sustainable practices of smart photocatalytic materials (SPMs), including concepts of theory and practice. This handbook is a valued reference for both the academic and industrial researchers looking for recent developments in the field. - Covers all aspects of recent developments in Environmental, Energy and Emerging applications of Smart Photocatalytic Materials - Focuses on advanced applications and future research advancements of Smart Photocatalytic Materials - Emphasizes the sustainability aspect of Smart Photocatalytic Materials - Presents a valuable reference for researchers and students that stimulates interest in designing smart materials