Photodissociaion Dynamics of Neutral Free Radicals


Book Description

Photofragment translational spectroscopy was used to study the photodissociation dynamics of the phenyl and tert-butyl radicals. These radicals were produced in a collisionless environment from the flash pyrolysis of the appropriate precursor, nitrosobenzene for phenyl and azo-tert-butane for the tert-butyl radical. The photodissociation dynamics of the phenyl radical (C6H5) were investigated at 248 and 193 nm. At 248 nm, the only dissociation products observed were from hydrogen atom loss, attributed primarily to H + o-C6H4 (ortho-benzyne). The observed translational energy distribution was consistent with statistical decay on the ground state surface. At 193 nm, dissociation to H + C6H4 and C4H3 + C2H2 was observed. The C6H4 fragment can be either o-C6H4 or l-C6H4 resulting from opening of the phenyl ring. The C4H3 + C2H2 products dominate over the two H loss channels. Attempts to reproduce the observed branching ratio by assuming ground state dynamics were unsuccessful. This discord, between the experimentally observed branching ratio and the theoretically predicted branching ratio led us to reinvestigate the dissociation dynamics of the phenyl radical at 193 nm, while producing the radical under different source conditions. The photodissociation dynamics of the tert-butyl radical (t-C4H9) were investigated at 248 nm. Two distinct channels of approximately equal importance were identified: dissociation to H + 2-methylpropene (C4H8), and CH3 + dimethylcarbene (C3H6). Neither the translational energy distributions that describe these two channels nor the product branching ratio are consistent with statistical dissociation on the ground state, and instead favor a mechanism taking place on excited state surfaces. The studies presented in this dissertation show that although hydrogen atom loss is sometimes expected to be the only major dissociation pathway in the photodissociation of hydrocarbon radicals this is not always a justified assumption.













Production and Photodissociation of Neutral Free Radicals


Book Description

The primary photochemistry of several combustion-relevant free radicals have been in- vestigated via photofragment translational spectroscopy. The relevance of radical photo- chemistry will be discussed, along with methodologies and details of each experiment. The experimental apparatus will also be described, especially with regard to the recent installa- tion of a tunable energy electron ionizer. The upgraded ionizer has been a significant advance, allowing for more detailed characterization of the radical source employed in this thesis. The photochemistry of the phenyl radical (c-C6H5), a combustion intermediate and pre- cursor to polycyclic aromatic hydrocarbons, was investigated at 248 and 193 nm. At 248 nm, an H-atom loss pathway was found, while at 193 nm both H-atom loss and C2H2 loss pathways were observed. For both wavelengths, P(ET) distributions suggested internal con- version to the ground electronic state followed by energy randomization and dissociation. The branching ratio between the two 193 nm dissociation pathways was found to be 0.2 ± 0.1 in favor of H-atom loss, in good agreement with statistical Rice-Rampsperger-Kassel-Marcus (RRKM) theory. An initial investigation of the methyl perthiyl radical (CH3SS) at 248 nm suggested the surprising results of both CH3 + SS and CH2S + SH dissociation channels with no evidence for S-atom loss. In both cases, the translational energy distributions were inconsistent with the expected energetics. Upon reinvestigation, the assumption of radical production--and there- fore radical photodissociation--was shown to be incorrect. The new results demonstrated S-loss and CH3 loss pathways, with the former appearing to involve a repulsive electronic excited state.