Aberration Corrected Photoemission Electron Microscopy with Photonics Applications


Book Description

Photoemission electron microscopy (PEEM) uses photoelectrons excited from material surfaces by incident photons to probe the interaction of light with surfaces with nanometer-scale resolution. The point resolution of PEEM images is strongly limited by spherical and chromatic aberration. Image aberrations primarily originate from the acceleration of photoelectrons and imaging with the objective lens and vary strongly in magnitude with specimen emission characteristics. Spherical and chromatic aberration can be corrected with an electrostatic mirror, and here I develop a triode mirror with hyperbolic geometry that has two adjacent, field-adjustable regions. I present analytic and numerical models of the mirror and show that the optical properties agree to within a few percent. When this mirror is coupled with an electron lens, it can provide a large dynamic range of correction and the coefficients of spherical and chromatic aberration can be varied independently. I report on efforts to realize a triode mirror corrector, including design, characterization, and alignment in our microscope at Portland State University (PSU). PEEM may be used to investigate optically active nanostructures, and we show that photoelectron emission yields can be identified with diffraction, surface plasmons, and dielectric waveguiding. Furthermore, we find that photoelectron micrographs of nanostructured metal and dielectric structures correlate with electromagnetic field calculations. We conclude that photoemission is highly spatially sensitive to the electromagnetic field intensity, allowing the direct visualization of the interaction of light with material surfaces at nanometer scales and over a wide range of incident light frequencies.




Modeling Nanoscale Imaging in Electron Microscopy


Book Description

Modeling Nanoscale Imaging in Electron Microscopy presents the recent advances that have been made using mathematical methods to resolve problems in microscopy. With improvements in hardware-based aberration software significantly expanding the nanoscale imaging capabilities of scanning transmission electron microscopes (STEM), these mathematical models can replace some labor intensive procedures used to operate and maintain STEMs. This book, the first in its field since 1998, will also cover such relevant concepts as superresolution techniques, special denoising methods, application of mathematical/statistical learning theory, and compressed sensing.




Attosecond Nanophysics


Book Description

Die Autoren geben einen tiefen wie auch umfassenden Überblick über die aktuelle Forschung im Bereich der Attosekunden-Nanophysik, d.h. einem Gebiet der nanoskaligen Festkörpersysteme und der natürlichen Zeitskala von Elektronenbewegungen.




Nanoscale Scale Imaging of Photoexcited States Using Electron Microscopy


Book Description

Seeing is believing. The ability to directly visualize things greatly deepens people's knowledge and advances researches in many fields. Apart from resolving tiny things, optical imaging can also provide spectroscopy information which offers fundamental insights into the energy states of matter. As research develops at the nanoscale, these energy states are often a↵ected by nanostructuring and local defects of the sample. An imaging tool that can provide optical information with nanometerscale spatial resolution will o↵er fundamental insights, greatly enhance our ability to design novel materials, and advance research in a wealth of areas, including but not limited to optoelectronics, quantum materials, defect engineering, surface catalysis, and molecular biology.Many optical spectroscopy and imaging techniques like Raman, photoluminescence, and infrared spectroscopy are widely used for materials characterization. Visible photons have energies (meV to eV) match with those of the energy states inside the material and thus process excellent spectral selectivity. However, the spatial resolution of traditional optical techniques is diffraction-limited by the wavelength of light used, which is hundreds of nanometers to microns. Although various techniques such scanning probe techniques in the near field and super-resolution techniques in the far-field have been developed to overcome this di↵raction limit and reached ⇠10 nm resolution, these techniques require fluorescent labels or a sharp scanning tip, which limits their application.On the other hand, modern scanning or transmission electron microscopes (SEM or TEM) can readily achieve nanometer and angstrom spatial resolution using 1-300 keV high-energy electrons. However, the energy mismatch between such high-energy electrons and the energy states inside the sample makes high spectral resolution challenging for electron microscopes. Only very recently can some state-of-the-art electron monochromator achieve meV energy resolution, but this requires expensive and specialized instruments. Nanometer and atomic resolution label-free imaging with v optical information has remained a major scientific challenge.In the work presented in this thesis, we developed a new imaging technique named PhotoAbsorption Microscopy using ELectron Analysis (PAMELA). PAMELA combines the high spectral selectivity of photoexcitation and the high spatial resolution of electron microscopes to o↵er nanometer-scale imaging with optical information. We implement PAMELA on two platforms, an SEM and a TEM, to demonstrate optical imaging first below the optical di↵raction limit and eventually at the atomic scale resolution.For PAMELA-SEM, we experimentally demonstrate spectrally specific photoabsorption imaging with sub-20 nanometer spatial resolution using various semiconductor and metal nanoparticles. The photoabsorption-induced contrast mechanism is attributed to surface photovoltage which modulates the secondary electron emission. Theoretical analysis and Monte Carlo simulations are performed to explain the trends of the signal observed.For PAMELA-TEM, we discuss the possibility of imaging photoexcited states with atomic-scale resolution. We design an experimental set-up based on high-resolution TEM (HRTEM) and use ab initio together with HRTEM simulations to calculate the imaging conditions required for a few model systems, including defects in hexagonal boron nitride (h-BN) and core-shell quantum dots.PAMELA techniques are based on photoabsorption which is the first and fundamental step in lightmatter interactions: every atom or molecule absorbs photons but only a few fluoresce. Photoabsorption contains rich information about the electronic structure and vibrational and rotational modes of materials. We believe PAMELA will o↵er new opportunities for nanometer-scale optical spectroscopic imaging and material characterization.




Imaging Light with Photoelectrons on the Nano-Femto Scale


Book Description

This thesis presents significant advances in the imaging and theory of the ultrafast dynamics of surface plasmon polariton fields. The author details construction of a sub-10 femtosecond and sub-10 nanometer spatiotemporal resolution ultrafast photoemission microscope which is subsequently used for the discovery of topological meron and skyrmion-like plasmonic quasiparticles. In particular, this enabled the creation of movies of the surface plasmon polariton fields evolving on sub-optical wavelength scales at around 0.1 femtosecond per image frame undergoing vortex phase evolution. The key insight that the transverse spin of surface plasmon polaritons undergoes a texturing into meron or skyrmion-like topological quasiparticles (defined by the geometric charge of the preparation) follows. In addition, this thesis develops an analytical theory of these new topological quasiparticles, opening new avenues of research, while the ultrafast microscopy techniques established within will also be broadly applicable to studies of nanoscale optical excitations in electronic materials.




Handbook of Microscopy for Nanotechnology


Book Description

Nanostructured materials take on an enormously rich variety of properties and promise exciting new advances in micromechanical, electronic, and magnetic devices as well as in molecular fabrications. The structure-composition-processing-property relationships for these sub 100 nm-sized materials can only be understood by employing an array of modern microscopy and microanalysis tools. Handbook of Microscopy for Nanotechnology aims to provide an overview of the basics and applications of various microscopy techniques for nanotechnology. This handbook highlights various key microcopic techniques and their applications in this fast-growing field. Topics to be covered include the following: scanning near field optical microscopy, confocal optical microscopy, atomic force microscopy, magnetic force microscopy, scanning turning microscopy, high-resolution scanning electron microscopy, orientational imaging microscopy, high-resolution transmission electron microscopy, scanning transmission electron microscopy, environmental transmission electron microscopy, quantitative electron diffraction, Lorentz microscopy, electron holography, 3-D transmission electron microscopy, high-spatial resolution quantitative microanalysis, electron-energy-loss spectroscopy and spectral imaging, focused ion beam, secondary ion microscopy, and field ion microscopy.




New Horizons of Applied Scanning Electron Microscopy


Book Description

In modern scanning electron microscopy, sample surface preparation is of key importance, just as it is in transmission electron microscopy. With the procedures for sample surface preparation provided in the present book, the enormous potential of advanced scanning electron microscopes can be realized fully. This will take the reader to an entirely new level of scanning electron microscopy and finely-detailed images never seen before.




Impact of Electron and Scanning Probe Microscopy on Materials Research


Book Description

The Advanced Study Institute provided an opportunity for researchers in universities, industry and National and International Laboratories, from the disciplines ofmaterials science, physics, chemistry and engineering to meet together in an assessment of the impact of electron and scanning probe microscopy on advanced material research. Since these researchers have traditionally relied upon different approaches, due to their different scientific background, to advanced materials problem solving, presentations and discussion within the Institute sessions were initially devoted to developing a set ofmutually understood basic concepts, inherently related to different techniques ofcharacterization by microscopy and spectroscopy. Particular importance was placed on Electron Energy Loss Spectroscopy (EELS), Scanning Probe Microscopy (SPM), High Resolution Transmission and Scanning Electron Microscopy (HRTEM, HRSTEM) and Environmental Scanning Electron Microscopy (ESEM). It was recognized that the electronic structure derived directly from EELS analysis as well as from atomic positions in HRTEM or High Angle Annular Dark Field STEM can be used to understand the macroscopic behaviour of materials. The emphasis, however, was upon the analysis of the electronic band structure of grain boundaries, fundamental for the understanding of macroscopic quantities such as strength, cohesion, plasticity, etc.




Progress in Nanoscale Characterization and Manipulation


Book Description

This book focuses on charged-particle optics and microscopy, as well as their applications in the materials sciences. Presenting a range of cutting-edge theoretical and methodological advances in electron microscopy and microanalysis, and examining their crucial roles in modern materials research, it offers a unique resource for all researchers who work in ultramicroscopy and/or materials research. The book addresses the growing opportunities in this field and introduces readers to the state of the art in charged-particle microscopy techniques. It showcases recent advances in scanning electron microscopy, transmission electron microscopy and helium ion microscopy, including advanced spectroscopy, spherical-corrected microscopy, focused-ion imaging and in-situ microscopy. Covering these and other essential topics, the book is intended to facilitate the development of microscopy techniques, inspire young researchers, and make a valuable contribution to the field.