Photographic Characterization of Spark-Ignition Engine Fuel Injectors


Book Description

Manifold port fuel injectors suitable for use in general aviation spark-ignition engines were evaluated qualitatively on the basis of fuel spray characteristics. Photographs were taken at various fuel flow rates or pressure levels. Mechanically and electronically operated pintle injectors generally produced the most atomization. The plain-orifice injectors used on most fuel-injected general aviation engines did not atomize the fuel when sprayed into quiescent air. Evanich, P. L. Glenn Research Center NASA-TM-78830, E-9535










Analysis of Spark-ignition Engine Knock as Seen in Photographs Taken at 200,000 Frames a Second


Book Description

A motion-picture of the development of knock in a spark-ignition engine is presented, which consists of 20 photographs taken at intervals of 5 microseconds, or at a rate of 200,000 photographs a second, with an equivalent wide-open exposure time of 6.4 microseconds for each photograph. A motion picture of a complete combustion process, including the development of knock, taken at the rate of 40,000 photographs a second is also presented to assist the reader in orienting the photographs of the knock development taken at 200,000 frames per second are analyzed and the conclusion is made that the type of knock in the spark-ignition engine involving violent gas vibration originates as a self-propagating disturbance starting at a point in the burning or autoigniting gases and spreading out from that point through the incompletely burned gases at a rate as high as 6800 feet per second, or about twice the speed of sound in the burned gases. Apparent formation of free carbon particles in both the burning and the burned gas is observed within 10 microseconds after passage of the knock disturbance through the gases.







Design and Experimental Characterization of Electrostatically Assisted Automotive Fuel Injectors


Book Description

With current automotive fuel injector designs, fuel mass and momentum cannot be independently controlled during engine operation. By introducing electrostatic charge to the fuel as it is injected, a means of altering the injector spray pattern without changing the mass injected is available. A commercially available automotive fuel injector was modified to apply electrostatic charge to the fuel spray. The resulting electrostatically charged sprays were compared to non-charged sprays from the same injector using a Mie scattering technique to image the spray, Fraunhofer diffraction to measure droplet size, and particle image velocimetry to measure droplet velocities. Results showed application of charge results in increased spray penetration during early injection, increased droplet axial velocities, and reduced spray-to-spray variations in droplet size. Measurements of the charge transferred by a spray indicated relatively weak electrostatically induced forces relative to inertial forces, but showed that conductivity enhancers or alcohol blended fuels can substantially increase charge transfer. The effect of charge on the combustion process was investigated by capturing high speed video of charged and non-charged droplets composed of blends of ethanol and isooctane. Substantial changes in droplet morphology depending on the polarity of the charge applied were found. In addition, to test charged sprays in a practical combustion system, an engine test cell was constructed using a spark ignition engine typical of current designs for automotive use. Findings indicate that application of charge to the injector can increase peak cylinder pressure and reduce unburned hydrocarbon emissions a small amount with the trade off of a slight increase in emissions of oxides of nitrogen.