Photomechanical Materials, Composites, and Systems


Book Description

An exhaustive review of the history, current state, and future opportunities for harnessing light to accomplish useful work in materials, this book describes the chemistry, physics, and mechanics of light-controlled systems. • Describes photomechanical materials and mechanisms, along with key applications • Exceptional collection of leading authors, internationally recognized for their work in this growing area • Covers the full scope of photomechanical materials: polymers, crystals, ceramics, and nanocomposites • Deals with an interdisciplinary coupling of mechanics, materials, chemistry, and physics • Emphasizes application opportunities in creating adaptive surface features, shape memory devices, and actuators; while assessing future prospects for utility in optics and photonics and soft robotics




Mechanically Responsive Materials for Soft Robotics


Book Description

Offers a comprehensive review of the research and development of mechanically responsive materials and their applications in soft robots Mechanically Responsive Materials for Soft Robotics offers an authoritative guide to the current state of mechanically responsive materials for the development of soft robotics. With contributions from an international panel of experts, the book examines existing mechanically responsive materials such as crystals, polymers, gels, and composites that are stimulated by light and heat. The book also explores the application of mechanical materials to soft robotics. The authors describe the many excellent mechanical crystals developed in recent years that show the ability to bend, twist, rotate, jump, self-heal, and shape memory. Mechanical polymer materials are described for evolution into artificial muscles, photomobile materials, bioinspired soft actuators, inorganic-organic hybrid materials, multi-responsive composite materials, and strain sensor materials. The application of mechanical materials to soft robots is just the beginning. This book reviews the many challenging and versatile applications, such as soft microrobots made from photoresponsive elastomers, four-dimensional printing for assembling soft robots, self-growing of soft robots like plants, and biohybrid robots using muscle tissue. This important book: -Explores recent developments in the use of soft smart materials in robotic systems -Covers the full scope of mechanically responsive materials: polymers, crystals, gels, and nanocomposites -Deals with an interdisciplinary topic of advanced smart materials research -Contains extensive descriptions of current and future applications in soft robotics Written for materials scientists, polymer chemists, photochemists, physical chemists, solid state chemists, inorganic chemists, and robotics engineers, Mechanically Responsive Materials for Soft Robotics offers a comprehensive and timely review of the most recent research on mechanically responsive materials and the manufacture of soft robotics.




Photosynergetic Responses in Molecules and Molecular Aggregates


Book Description

This book compiles the accomplishments of the recent research project on photochemistry “Photosynergetics”, supported by the Ministry of Education, Culture, Sports, Science and Technology of Japan, aiming to develop and elucidate new methods and molecules leading to advanced utilization of photo-energies. Topics include photochemical responses induced by multiple excitation, multiphoton absorption, strong modulation of electronic states, developments of new photofunctional molecules, mesoscopic actuations induced by photoexcitation, and novel photoresponses in molecules and molecular assemblies. The authors stress that these approaches based on the synergetic interaction among many photons and many molecules enable the expansion of the accessibility to specific electronic states. As well, they explain how the development of reaction sequences and molecules/molecular assemblies ensure “additivity” and “integration” without loss of the photon energy, leading to new photoresponsive assemblies in meso- and macroscopic scales.




Additive Manufacturing


Book Description

This book covers additive manufacturing of polymers, metals, ceramics, fiber reinforced polymer composites, energy harvesting materials, and biomaterials. Hybrid manufacturing is discussed. Topology optimization methodology is described and finite element software examples are provided. The book is ideal for graduate students and career starters in the industry.




Molecular Photoswitches


Book Description

A comprehensive overview about the emerging field of photoswitches and their applications in materials science and biology Molecular Photoswitches guides the reader through the basic molecular structures of photochromic compounds and their applications in the area of photoresponsive materials as well as in the biological context. The initial chapters describe individual classes of molecular photoswitches, introducing their principles of photochromism, typical switching wavelengths, thermal stability of photoisomers and other key information, which is ordinarily spread in the literature. These classes comprise i.a. azobenzenes, diazocines, arylazoheterocycles, arylhydrazones, indigoids, photochromic imines, or acylhydrazones. The book also covers: Catalysis with molecular switches Applications in photochromic porous materials, liquid crystals, or nanoparticles Light-responsive molecular machines, logic devices, and molecular magnets Photomodulation of biological systems: photoswitchable biopolymers, lightmodulated antibiotics, cytotoxins, ion channel inhibitors, light-propelled artificial muscles, and computationally designed photochromic proteins This two-volume work is a valuable guide for researchers and non-experts working in the field of photochemistry, organic chemistry, catalysis, materials science, biology, and medicine.




Photochemistry


Book Description

Providing critical reviews of recent advances in photochemistry, including computational and organic aspects, the latest volume in the series reflects the current interests in this area. It includes a series of highlights on photorelease processes (via two-photon excitation and Norrish type II reactions), the design of light-activated tissue bonding, photoresponsive molecular devices targeting nucleic acids, ECL based biosensing techniques, photochemical bond activation at metal centres, photoredox catalysis via aromatic hydrocarbons, photoinduced multicomponent reactions and asymmetric catalysis via triplet-state. This is essential reading for anyone wanting to keep up to date with the literature on photochemistry and its applications.




Advanced Composite and Engineering Materials


Book Description

Special topic volume with invited peer-reviewed papers only




Materials Science and Technology of Optical Fabrication


Book Description

Covers the fundamental science of grinding and polishing by examining the chemical and mechanical interactions over many scale lengths Manufacturing next generation optics has been, and will continue to be, enablers for enhancing the performance of advanced laser, imaging, and spectroscopy systems. This book reexamines the age-old field of optical fabrication from a materials-science perspective, specifically the multiple, complex interactions between the workpiece (optic), slurry, and lap. It also describes novel characterization and fabrication techniques to improve and better understand the optical fabrication process, ultimately leading to higher quality optics with higher yield. Materials Science and Technology of Optical Fabrication is divided into two major parts. The first part describes the phenomena and corresponding process parameters affecting both the grinding and polishing processes during optical fabrication. It then relates them to the critical resulting properties of the optic (surface quality, surface figure, surface roughness, and material removal rate). The second part of the book covers a number of related topics including: developed forensic tools used to increase yield of optics with respect to surface quality (scratch/dig) and fracture loss; novel characterization and fabrication techniques used to understand/quantify the fundamental phenomena described in the first part of the book; novel and recent optical fabrication processes and their connection with the fundamental interactions; and finally, special techniques utilized to fabricate optics with high damage resistance. Focuses on the fundamentals of grinding and polishing, from a materials science viewpoint, by studying the chemical and mechanical interactions/phenomena over many scale lengths between the workpiece, slurry, and lap Explains how these phenomena affect the major characteristics of the optic workpiece—namely surface figure, surface quality, surface roughness, and material removal rate Describes methods to improve the major characteristics of the workpiece as well as improve process yield, such as through fractography and scratch forensics Covers novel characterization and fabrication techniques used to understand and quantify the fundamental phenomena of various aspects of the workpiece or fabrication process Details novel and recent optical fabrication processes and their connection with the fundamental interactions Materials Science and Technology of Optical Fabrication is an excellent guidebook for process engineers, fabrication engineers, manufacturing engineers, optical scientists, and opticians in the optical fabrication industry. It will also be helpful for students studying material science and applied optics/photonics.




Photochromic Materials


Book Description

Summarizing all the latest trends and recent topics in one handy volume, this book covers everything needed for a solid understanding of photochromic materials. Following a general introduction to organic photochromic materials, the authors move on to discuss not only the underlying theory but also the properties of such materials. After a selection of pplications, they look at the latest achievements in traditional solution-phase applications, including photochromic-based molecular logic operations and memory, optically modulated supramolecular system and sensors, as well as light-tunable chemical reactions. The book then describes the hotspot areas of photo-switchable surfaces and nanomaterials, photochromic-based luminescence/electronic devices and bulk materials together with light-regulated biological and bio-chemical systems. The authors conclude with a focus on current industrial applications and the future outlook for these materials. Written with both senior researchers and entrants to the field in mind.




Polarized Light in Liquid Crystals and Polymers


Book Description

Polarized Light in Liquid Crystals and Polymers deals with the linear optics of birefringent materials, such as liquid crystals and polymers, and surveys light propagation in such media with special attention to applications. It is unique in treating light propagation in micro- and nanostructured birefringent optical elements, such as lenses and gratings composed of birefringent materials, as well as the spatial varying anisotropic structures often found in miniaturized liquid crystal devices.