Photonic Applications for Radio Systems Networks


Book Description

This hands-on, practical new resource provides optical network designers with basic but necessary information about radio systems air interface and radio access network architecture, protocols, and interfaces, using 5G use cases as relevant example. The book introduces mobile network designers to the transmission modeling techniques for the design of a radio access optical network. The main linear and non-linear propagation effects in optical fiber are covered. The book introduces mobile network designers to the optical technologies used in digital and analog radio access networks, such as optical amplifiers and transmitters, and describes different deployment scenarios, including point-to-point fiber systems, wavelength-division multiplexing systems, and passive optical networks. New integrated photonic technologies for optical switching are also discussed. The book illustrates the principles of optical beamforming and explains how optical technologies can be used to provide accurate phase and frequency control of antenna elements. The new architecture of the optical transport network, driven by the new, challenging requirements that 5G poses in terms of high capacity, high energy efficiency, low latency and low cost is discussed. The use of photonic devices to perform tasks as radio-frequency generation and beamforming, with improved accuracy and cost compared to traditional electronic systems, especially when moving to mm-waves is also explored. Readers also learn the replacement of electric interconnect systems with higher speed and more energy efficient optical lines to perform more effectively computationally demanding baseband processing in 5G. All presented propagation models can be implemented in a spreadsheet, in order to provide the designer with simple rules of thumbs for network planning.




Electromagnetic and Photonic Simulation for the Beginner: Finite-Difference Frequency-Domain in MATLAB®


Book Description

This book teaches the finite-difference frequency-domain (FDFD) method from the simplest concepts to advanced three-dimensional simulations. It uses plain language and high-quality graphics to help the complete beginner grasp all the concepts quickly and visually. This single resource includes everything needed to simulate a wide variety of different electromagnetic and photonic devices. The book is filled with helpful guidance and computational wisdom that will help the reader easily simulate their own devices and more easily learn and implement other methods in computational electromagnetics. Special techniques in MATLAB® are presented that will allow the reader to write their own FDFD programs. Key concepts in electromagnetics are reviewed so the reader can fully understand the calculations happening in FDFD. A powerful method for implementing the finite-difference method is taught that will enable the reader to solve entirely new differential equations and sets of differential equations in mere minutes. Separate chapters are included that describe how Maxwell’s equations are approximated using finite-differences and how outgoing waves can be absorbed using a perfectly matched layer absorbing boundary. With this background, a chapter describes how to calculate guided modes in waveguides and transmission lines. The effective index method is taught as way to model many three-dimensional devices in just two-dimensions. Another chapter describes how to calculate photonic band diagrams and isofrequency contours to quickly estimate the properties of periodic structures like photonic crystals. Next, a chapter presents how to analyze diffraction gratings and calculate the power coupled into each diffraction order. This book shows that many devices can be simulated in the context of a diffraction grating including guided-mode resonance filters, photonic crystals, polarizers, metamaterials, frequency selective surfaces, and metasurfaces. Plane wave sources, Gaussian beam sources, and guided-mode sources are all described in detail, allowing devices to be simulated in multiple ways. An optical integrated circuit is simulated using the effective index method to build a two-dimensional model of the 3D device and then launch a guided-mode source into the circuit. A chapter is included to describe how the code can be modified to easily perform parameter sweeps, such as plotting reflection and transmission as a function of frequency, wavelength, angle of incidence, or a dimension of the device. The last chapter is advanced and teaches FDFD for three-dimensional devices composed of anisotropic materials. It includes simulations of a crossed grating, a doubly-periodic guided-mode resonance filter, a frequency selective surface, and an invisibility cloak. The chapter also includes a parameter retrieval from a left-handed metamaterial. The book includes all the MATLAB codes and detailed explanations of all programs. This will allow the reader to easily modify the codes to simulate their own ideas and devices. The author has created a website where the MATLAB codes can be downloaded, errata can be seen, and other learning resources can be accessed. This is an ideal book for both an undergraduate elective course as well as a graduate course in computational electromagnetics because it covers the background material so well and includes examples of many different types of devices that will be of interest to a very wide audience.




Natural Photonics and Bioinspiration


Book Description

Photonic structures occurring in biological tissues such as butterfly wings, beetle elytra or fish scales are responsible for a broad range of optical effects including iridescence, narrow-band reflection, large solid-angle scattering, polarization effects, additive color mixing, fluid-induced color changes, controlled fluorescence. Studies have provided understanding of the underlying optical mechanisms and the biological functions as well as inspiration for the design and development of novel photonic devices, also called bioinspiration. In this forward-thinking book, the research related to photonic structures in natural organisms is reviewed with a main foPhotonic structures occurring in biological tissues such as butterfly wings, beetle elytra, or fish scales are responsible for a broad range of optical effects including iridescence, narrow band reflection, large solid-angle scattering, polarization, additive color mixing, fluid induced color changes, and controlled fluorescence. This book reviews research of biological photonic devices in accordance with the fundamental aspects of physical optics and environmental biology. It provides readers with an understanding of numerical modelling based on morphological and optical characterizations as well as the quantitative treatment of color vision. This forward-thinking book ties these concepts to the design and synthesis of bioinspired photonic devices and opens the door to the applications of nature’s lessons in the technical world. This resource introduces a methodology for working with and utilizing bioinspiration. It includes the experimental and numerical tools necessary for the characterization and simulation of photonic structures and uses original concepts as examples, with a focus on bioinspired hygrochromatic materials. Professionals are brought up to speed on a variety of fabrication techniques and methods of synthesis all following a straightforward bottom-up or top-down approach. The reader will gain an understanding of the capability of bioinspiration to meet human needs. This book’s explanation of how natural photonics structures behave as efficient solar absorbers or thermal management devices makes it a useful resource for technical professionals in the field of energy and environment, and the concepts presented in this book also have applications in the designs of optical coatings, sensors, and light sources.




Introduction to Infrared and Electro-Optical Systems, Third Edition


Book Description

This newly revised and updated edition offers a current and complete introduction to the analysis and design of Electro-Optical (EO) imaging systems. The Third Edition provides numerous updates and several new chapters including those covering Pilotage, Infrared Search and Track, and Simplified Target Acquisition Model. The principles and components of the Linear Shift-Invariant (LSI) infrared and electro-optical systems are detailed in full and help you to combine this approach with calculus and domain transformations to achieve a successful imaging system analysis. Ultimately, the steps described in this book lead to results in quantitative characterizations of performance metrics such as modulation transfer functions, minimum resolvable temperature difference, minimum resolvable contrast, and probability of object discrimination. The book includes an introduction to two-dimensional functions and mathematics which can be used to describe image transfer characteristics and imaging system components. You also learn diffraction concepts of coherent and incoherent imaging systems which show you the fundamental limits of their performance. By using the evaluation procedures contained in this desktop reference, you become capable of predicting both sensor test and field performance and quantifying the effects of component variations. The book contains over 800 time-saving equations and includes numerous analyses and designs throughout. It also includes a reference link to special website prepared by the authors that augments the book in the classroom and serves as an additional resource for practicing engineers. With its comprehensive coverage and practical approach, this is a strong resource for engineers needing a bench reference for sensor and basic scenario performance calculations. Numerous analyses and designs are given throughout the text. It is also an excellent text for upper-level students with an interest in electronic imaging systems.




The Fiber-Optic Gyroscope, Third Edition


Book Description

This landmark work – considered by many in the field to be THE reference on fiber-optic gyroscopes (FOGs) – provides you with a complete and thorough system analysis of the FOG and remains unmatched by any other single source. Now in its third edition, this fully updated and authoritative book: Gives you access to all the details you need to know about optics, single-mode fiber optics, and integrated optics to fully grasp the design rules of the fiber-optic gyroscope Helps you understand the concepts that have emerged as the preferred solutions to obtain a practical device Guides you through the advances that have occurred in the last seven years since the previous edition was published and how they are implemented in the current FOGs Drawing on 45 years of research and development, The Fiber-Optic Gyroscope, Third Edition, features new content on the relationship between white-noise power spectral density and random walk; Allan variance; testing with optical coherence domain polarimetry; a new simple mechanical model of the thermally induced stresses and related strains in the sensing coil; simple viewing of the reduction of the Shupe effect with symmetrical windings; and comments about dispersion and birefringence dispersion. The book contains over 350 illustrations (including 70 new figures) and many helpful appendixes, and gives you everything you need to understand the fiber gyro. The author is a leading expert in this field and is one of the early pioneers of the practical optical architecture and signal processing technique that is universally used in today’s FOGs. This is a must-have reference for anyone working with FOGs, from students and academics learning about the device, to optoelectronics engineers and professionals needing to stay abreast of the current concepts and recent advances.




Neuromorphic Photonics


Book Description

This book sets out to build bridges between the domains of photonic device physics and neural networks, providing a comprehensive overview of the emerging field of "neuromorphic photonics." It includes a thorough discussion of evolution of neuromorphic photonics from the advent of fiber-optic neurons to today’s state-of-the-art integrated laser neurons, which are a current focus of international research. Neuromorphic Photonics explores candidate interconnection architectures and devices for integrated neuromorphic networks, along with key functionality such as learning. It is written at a level accessible to graduate students, while also intending to serve as a comprehensive reference for experts in the field.




Microwave Photonics


Book Description

Microwave photonics is an important interdisciplinary field that, amongst a host of other benefits, enables engineers to implement new functions in microwave systems. With contributions from leading experts, Microwave Photonics: Devices and Applications explores this rapidly developing discipline. It bridges a gap between microwave and photonic engineering, providing an accessible interpretation of the current available research material and a detailed introduction to various aspects of the area. Opening with an overview to the subject, this book covers direct modulation, photonic oscillators for THz signal generation, and terahertz sources. It takes a unique application- focused approach and describes: analogue fibre-optic links; fibre radio technology; microwave photonic signal processing; measurement of microwave photonic components, and; biomedical applications. This text is ideal for practising microwave and fibre optics communication engineers wishing to improve their knowledge, and for researchers and graduate students wanting an overview of the subject.




Microwave Photonics


Book Description

Microwave photonics is an important interdisciplinary field that, amongst a host of other benefits, enables engineers to implement new functions in microwave systems. With contributions from leading experts, Microwave Photonics: Devices and Applications explores this rapidly developing discipline. It bridges a gap between microwave and photonic engineering, providing an accessible interpretation of the current available research material and a detailed introduction to various aspects of the area. Opening with an overview to the subject, this book covers direct modulation, photonic oscillators for THz signal generation, and terahertz sources. It takes a unique application- focused approach and describes: analogue fibre-optic links; fibre radio technology; microwave photonic signal processing; measurement of microwave photonic components, and; biomedical applications. This text is ideal for practising microwave and fibre optics communication engineers wishing to improve their knowledge, and for researchers and graduate students wanting an overview of the subject.




Microwave Photonics


Book Description

This cross-disciplinary title features contributions by key-note specialists from Europe, Israel and the United States. It deals with the rapidly growing area of microwave photonics, and includes an extended study of the interactions between optical signals and microwave and millimetre-wave electrical signals for broadband applications.




Optical Communication


Book Description

Optical communication is very much useful in telecommunication systems, data processing and networking. It consists of a transmitter that encodes a message into an optical signal, a channel that carries the signal to its desired destination, and a receiver that reproduces the message from the received optical signal. It presents up to date results on communication systems, along with the explanations of their relevance, from leading researchers in this field. The chapters cover general concepts of optical communication, components, systems, networks, signal processing and MIMO systems. In recent years, optical components and other enhanced signal processing functions are also considered in depth for optical communications systems. The researcher has also concentrated on optical devices, networking, signal processing, and MIMO systems and other enhanced functions for optical communication. This book is targeted at research, development and design engineers from the teams in manufacturing industry, academia and telecommunication industries.