Photonic Signals and Systems: An Introduction


Book Description

Build the skills needed to engineer next-generation systems using light Photonic Signals and Systems: An Introduction presents essential and current knowledge of light applied in the design of innovative photonic systems that engage both optical and electrical signals. The book demonstrates how to design photonic systems operating within the required approximations of the deployed photonic devices, mathematics of signal processing, and optical phenomena. Systems problems are solved using a variety of mature optical technologies, such as acousto-optics, liquid crystals, liquid optics, optical micro-electro-mechanical systems (MEMS), bulk optics, integrated optics, and optical fibers. End-of-chapter problems and solutions reinforce a thorough understanding of the material. Contents include: Nature of light Electromagnetic waves, light, and polarization Interference, coherence, and diffraction Optical building blocks—components Photonic systems using optical micro-electro-mechanical systems devices Photonic systems using acousto-optic devices Photonic systems using liquid crystal and liquid devices Optical experiments




Photonic Signal Processing


Book Description

The potential of photonic signal processing (PSP) to overcome electronic limits for processing ultra-wideband signals, provide signal conditioning that can be integrated in line with fiber optic systems, and improve signal quality makes this technology extremely attractive for improvement in receiver sensitivity performance. Spanning the current transitional period, Photonic Signal Processing: Techniques and Applications addresses the merging techniques of processing and manipulating signals propagating in the optical domain. The book begins with a historical perspective of PSP and introduces photonic components essential for photonic processing systems, such as optical amplification devices, optical fibers, and optical modulators. The author demonstrates the representation of photonic circuits via a signal flow graph technique adapted for photonic domain. He describes photonic signal processors, such as differentiators and integrators, and their applications for the generation of solitons, and then covers the application of these solitons in optically amplified fiber transmission systems. The book illustrates the compensation dispersion using a photonic processor, the design of optical filters using photonic processor techniques, and the filtering of microwave signals in the optical domain. Exploring methods for the processing of signals in the optical domain, the book includes solutions to photonic circuits that use signal flow techniques and significant applications in short pulse generation, the filtering of signals, differentiation, and the integration of signals. It delineates fundamental techniques on the processing of signals in the optical domain as well as their applications that lead to advanced aspects of performing generation of short pulses, integration, differentiation, and filtering for optical communications systems and networks and processing of ultra-high speed signals.




Photonic Analog-to-Digital Conversion


Book Description

Provides a comprehensive look at the application of photonic approaches to the problem of analog-to-digital conversion. It looks into the progress made to date, discusses present research, and presents a glimpse of potential future technologies.




Signals and Systems


Book Description

This new edition of a successful text presents the subject of signals and systems in a step-by-step, integrated manner. The concepts are developed gradually, with continual reference to the practical situations where they would be applicable. Solutions Manual (0-13-803693-4)




Concise Optics


Book Description

This introductory text is a reader friendly treatment of geometrical and physical optics emphasizing problems and solved examples with detailed analysis and helpful commentary. The authors are seasoned educators with decades of experience teaching optics. Their approach is to gradually present mathematics explaining the physical concepts. It covers ray tracing to the wave nature of light, and introduces Maxwell’s equations in an organic fashion. The text then moves on to explains how to analyze simple optical systems such as spectacles for improving vision, microscopes, and telescopes, while also being exposed to contemporary research topics. Ajawad I. Haija is a professor of physics at Indiana University of Pennsylvania. M. Z. Numan is professor and chair of the department of physics at Indiana University of Pennsylvania. W. Larry Freeman is Emeritus Professor of Physics at Indiana University of Pennsylvania.




Nonlinear Optical Systems


Book Description

Nonlinear Optical Systems: Principles, Phenomena, and Advanced Signal Processing is a simplified overview of the evolution of technology associated with nonlinear systems and advanced signal processing. This book’s coverage ranges from fundamentals to phenomena to the most cutting-edge aspects of systems for next-generation biomedical monitoring and nonlinear optical transmission. The authors address how these systems are applied through photonic signal processing in contemporary optical systems for communications and/or laser systems. They include a concise but sufficient explanation of mathematical representation of nonlinear equations to provide insight into nonlinear dynamics at different phases. The book also describes advanced aspects of solitons and bound solitons for passive- and active-mode locked fiber lasers, in which higher-order differential equations can be employed to represent the dynamics of amplitude evolution in the current or voltages of lightwaves in such systems. Covering a wide range of topics, this book: Introduces nonlinear systems and some mathematical representations, particularly the routes to chaos and bifurcation Describes nonlinear fiber lightwave lasing systems Covers nonlinear phenomena in fiber lasers, including both passive and active energy storage cavities Experimentally and theoretically demonstrates soliton pulses, in which lightwaves are the carrier under their envelopes Assembles and demonstrates sequences of both single and multiple solitons in a group and then assesses their dynamics in detail Examines the evolution of bound solitons, which are transmitted through single-mode optical fibers that compose a phase variation system This text outlines the theory and techniques used in nonlinear physics and applications for physical systems. It also illustrates the use of MATLAB® and Simulink® computer models and processing techniques for nonlinear signals. Building on readers’ newly acquired fundamental understanding of nonlinear systems and associated signal processing, the book then demonstrates the use of such applications in real-world, practical environments.




Information Photonics


Book Description

The main aim of this book is to introduce the concept of photonic information processing technologies to the graduate and post-graduate students, researchers, engineers and scientists. It is expected to give the readers an insight into the concepts of photonic techniques of processing as a system, the photonic devices as required components which are applied in the areas of communication, computation and intelligent pattern recognition.




Signals and Systems


Book Description

This book provides a rigorous treatment of deterministic and random signals. It offers detailed information on topics including random signals, system modelling and system analysis. System analysis in frequency domain using Fourier transform and Laplace transform is explained with theory and numerical problems. The advanced techniques used for signal processing, especially for speech and image processing, are discussed. The properties of continuous time and discrete time signals are explained with a number of numerical problems. The physical significance of different properties is explained using real-life examples. To aid understanding, concept check questions, review questions, a summary of important concepts, and frequently asked questions are included. MATLAB programs, with output plots and simulation examples, are provided for each concept. Students can execute these simulations and verify the outputs.




Photonic Signal Processing, Second Edition


Book Description

This Second Edition of "Photonic Signal Processing" updates most recent R&D on processing techniques of signals in photonic domain from the fundamentals given in its first edition. Several modern techniques in Photonic Signal Processing (PSP) are described: Graphical signal flow technique to simplify the analysis of the photonic transfer functions, plus its insights into the physical phenomena of such processors. The resonance and interference of optical fields are presented by the poles and zeros of the optical circuits, respectively. Detailed design procedures for fixed and tunable optical filters. These filters, "brick-wall-like", now play a highly important role in ultra-broadband (100GBaud) to spectral shaping of sinc temporal response so as to generate truly Nyquist sampler of the received eye diagrams 3-D PSP allows multi-dimensional processing for highly complex optical signals Photonic differentiators and integrators for dark soliton generations. Optical dispersion compensating processors for ultra-long haul optical transmission systems. Some optical devices essentials for PSP. Many detailed PSP techniques are given in the chapters of this Second Edition.




Introduction to Ultra-Wideband Radar Systems


Book Description

This introductory reference covers the technology and concepts of ultra-wideband (UWB) radar systems. It provides up-to-date information for those who design, evaluate, analyze, or use UWB technology for any application. Since UWB technology is a developing field, the authors have stressed theory and hardware and have presented basic principles and concepts to help guide the design of UWB systems. Introduction to Ultra-Wideband Radar Systems is a comprehensive guide to the general features of UWB technology as well as a source for more detailed information.