Photoorganocatalysis In Organic Synthesis


Book Description

The use of organocatalysts able to photocatalyze an organic reaction is a rapidly growing field. These photocatalyzed transformations are more environmentally sustainable with respect to the use of expensive/toxic metal-based (photo)catalysts.Based on the authors' extensive experience in photogenerated intermediates, this book presents an overview on photocatalyzed organic processes having a synthetic significance, where an organic molecule functions as the photocatalyst.After a brief introduction defining the nature and the characteristics of a photoorganocatalyst (POC), the chapters are organized according to the class of POC used, as detailed below.Each chapter begins with a summary of the photophysical characteristics of the POCs and is followed by selected examples of synthetic applications. The last two chapters are devoted to the adoption of photoorganocatalysis in polymerization and to flow photoorganocatalysis. These in-depth explanations and practical applications make this title an essential reading for any chemistry student interested in organic (sustainable) synthesis.




Enabling Tools and Techniques for Organic Synthesis


Book Description

Provides the practical knowledge of how new technologies impact organic synthesis, enabling the reader to understand literature, evaluate different techniques, and solve synthetic challenges In recent years, new technologies have impacted organic chemistry to the point that they are no longer the sole domain of dedicated specialists. Computational chemistry, for example, can now be used by organic chemists to help predict outcomes, understand selectivity, and decipher mechanisms. To be prepared to solve various synthetic problems, it is increasingly important for chemists to familiarize themselves with a range of current and emerging tools and techniques. Enabling Tools and Techniques for Organic Synthesis A Practical Guide to Experimentation, Automation, and Computation provides a broad overview of contemporary research and new technologies applied to organic synthesis. Detailed chapters, written by a team of experts from academia and industry, describe different state-of-the-art techniques such as computer-assisted retrosynthesis, spectroscopy prediction with computational chemistry, high throughput experimentation for reaction screening, and robotic and automated data collection methods. Emphasizing real-world practicality, the book includes chapters on programming for synthetic chemists, Machine Learning (ML) in chemical synthesis, concepts and applications of computational chemistry, and more. Highlights the most recent methods in organic synthesis and describes how to employ these techniques in a reader’s own research Familiarize readers with the application of computational chemistry and automation technology in organic synthesis Introduces synthetic chemists to electrochemistry, photochemistry, and flow chemistry Helps readers comprehend the literature, assess the strengths and limitations of each technique, and apply those tools to solve synthetic challenges Provides case studies and guided examples with graphical illustrations in each chapter Enabling Tools and Techniques for Organic Synthesis: A Practical Guide to Experimentation, Automation, and Computation is an invaluable reference for scientists needing an up-to-date introduction to new tools, graduate students wanting to expand their organic chemistry skills, and instructors teaching courses in advanced techniques for organic synthesis.




Visible-Light-Active Photocatalysis


Book Description

A comprehensive and timely overview of this important and hot topic, with special emphasis placed on environmental applications and the potential for solar light harvesting. Following introductory chapters on environmental photocatalysis, water splitting, and applications in synthetic chemistry, further chapters focus on the synthesis and design of photocatalysts, solar energy conversion, and such environmental aspects as the removal of water pollutants, photocatalytic conversion of CO2. Besides metal oxide-based photocatalysts, the authors cover other relevant material classes including carbon-based nanomaterials and novel hybrid materials. Chapters on mechanistic aspects, computational modeling of photocatalysis and Challenges and perspectives of solar reactor design for industrial applications complete this unique survey of the subject. With its in-depth discussions ranging from a comprehensive understanding to the engineering of materials and applied devices, this is an invaluable resource for a range of disciplines.




Sustainable Organic Synthesis


Book Description

Recent years have seen huge growth in the area of sustainable chemistry. In order to meet the chemical needs of the global population whilst minimising impacts on health and the environment it is essential to keep reconsidering and improving synthetic processes. Sustainable Organic Synthesis is a comprehensive collection of contributions, provided by specialists in Green Chemistry, covering topics ranging from catalytic approaches to benign and alternative reaction media, and innovative and more efficient technologies.




Photochemistry


Book Description

This volume combines reviews on the latest advances in photochemical research with specific topical highlights in the field. Starting with periodical reports of the recent literature on organic and computational aspects including reports on computational photochemistry and chemiluminescence of biological and nanotechnological molecules, photochemistry of alkenes, dienes and polyenes, aromatic compounds and oxygen-containing functions. The final chapter of this section is a review of industrial application of photochemistry from 2014 to 2019. Coverage continues with highlighted topics, in the second part, from ruthenium-caged bioactive compounds, advances in logically and light induced systems, developments of metal-free photocatalysts, photoresponsive organophosphorus materials and applications of photo-fragmentation in synthesis, photo-click chemistry and azo-based molecular photoswitches. This volume will again include a section entitled ‘SPR Lectures on Photochemistry’, a collection of examples for academic readers to introduce a photochemistry topic and precious help for students in photochemistry. Providing critical analysis of the topics, this book is essential reading for anyone wanting to keep up to date with the literature on photochemistry and its applications. "A certain amount of energy destroys the same amount of CO2 according to the whether it is administered continuously or intermittently. In order to rationalize this result there are two possibilities, either the destruction of CO2 further occurred in the dark periods, which would lead to the same form of energy storing form, or in the illuminated period the reaction goes at twice the rate." O. Warburg, Biochem. Z., 1919, 100, 230–270.




Photochemistry Volume 48


Book Description

This volume combines reviews on the latest advances in photochemical research with specific topical highlights in the field. Starting with periodical reports of the recent literature on organic and computational aspects including reports on computational photochemistry and chemiluminescence of biological and nanotechnological molecules, photochemistry of alkenes, dienes and polyenes, aromatic compounds and oxygen-containing functions. The final chapter of this section is a review of industrial application of photochemistry from 2014 to 2019. Coverage continues with highlighted topics, in the second part, from ruthenium-caged bioactive compounds, advances in logically and light induced systems, developments of metal-free photocatalysts, photoresponsive organophosphorus materials and applications of photo-fragmentation in synthesis, photo-click chemistry and azo-based molecular photoswitches. This volume will again include a section entitled 'SPR Lectures on Photochemistry', a collection of examples for academic readers to introduce a photochemistry topic and precious help for students in photochemistry. Providing critical analysis of the topics, this book is essential reading for anyone wanting to keep up to date with the literature on photochemistry and its applications. "A certain amount of energy destroys the same amount of CO2 according to the whether it is administered continuously or intermittently. In order to rationalize this result there are two possibilities, either the destruction of CO2 further occurred in the dark periods, which would lead to the same form of energy storing form, or in the illuminated period the reaction goes at twice the rate." O. Warburg, Biochem. Z., 1919, 100, 230-270.




Quaternary Stereocenters


Book Description

Filling the gap in the literature, this book presents everything there is to know about this topic. By comprehensively covering the quaternary stereocenters found in a range of important and useful molecules in pharmaceutical and medicinal applications, as well as in thousands of natural products, the book provides the know-how chemists need to synthesize challenging molecules with numerous applications. A must for organic chemists in academia, the pharmaceutical industry and medicine. From the Contents: Important Natural Products Important Pharmaceuticals and Intermediates Aldol Reactions Michael Reactions and Conjugate Additions Cycloaddition Reactions Rearrangement Reactions Alkylation of Ketones and Imines Asymmetric Allylic Alkylation Asymmetric Cross Coupling and Heck Reactions Phase Transfer Catalysis Enzymatic Methods Radical Reactions




Recent Advances in Organocatalysis


Book Description

Organocatalysis has recently attracted enormous attention as green and sustainable catalysis. It was realized as a fundamental field providing wide families of catalysts for important organic transformations. It will certainly develop in the future. Given the diversity of accessible transformations, metal-catalyzed reactions have become major tools in organic synthesis that will undoubtedly continue to have an important impact in the future. Alternatively, over the last years, a metal-free approach such as organocatalysis has reached a level of faithfulness, allowing researchers to discover new catalytic systems based on engagement of new or early-prepared organic molecules as organocatalysts. Organocatalysis meets green chemistry principles, especially the reduction of toxicity and chemical accidents, the biodegradability, and the use of benign and friendlier reaction media and conditions.




Flow Chemistry – Applications


Book Description

The fully up-dated edition of the two-volume work covers both the theoretical foundation as well as the practical aspects. A strong insight in driving a chemical reaction is crucial for a deeper understanding of new potential technologies. New procedures for warranty of safety and green principles are discussed. Vol. 1: Fundamentals.




Asymmetric Synthesis Of 3, 3-disubstituted Oxindoles


Book Description

Indole derivatives are the most common heterocycle compounds present in nature, for this reason, they have been referred to as 'privileged structures'. In fact, many approved drugs — and natural products — belong to this family. Among indole derivatives, oxindoles have a structural complexity, which have stimulated generations of synthetic chemists to design strategies for assembling these structures, and their enantioselective synthesis is still growing.This book proposes to describe the known enantioselective syntheses of oxindole derivatives. It is divided in six chapters each referring to a specific class of asymmetric oxindole derivatives. After the introduction, Chapter 2 describes all-carbon spirooxindoles; Chapter 3, open chain 3,3-dialkyloxindoles; Chapter 4, 3-substituted-3-aminooxindoles; Chapter 5, 3-substituted-3-hydroxyoxindoles; Chapter 6, 3-hetero-3-substituted oxindoles. It will be a useful tool for synthetic chemists, who assemble total synthesis of natural products, as well as for drug discovery chemists either in academic or in industry R&S laboratories.