Photophysics of Molecular Materials


Book Description

Carbon based pi-conjugated materials offer a broad range of applications, going from molecular electronics and single molecule devices to nanotechnology, plastic electronics and optoelectronics. The proper physical description of such materials is in between that of molecular solids and that of low-dimensional covalent semiconductors. This book is a comprehensive review of their elementary excitations processes and dynamics, which merges the two viewpoints, sometimes very different if not contrasting. In each chapter, a broad tutorial introduction provides a solid physical background to the topic, which is further discussed based on recent experimental results obtained via state-of-the-art techniques. Both the molecular, intra-chain character and the solid state, inter-molecular physics is addressed. Reports on single molecule and single polymer chain spectroscopy introduce the on-site phenomena. Several chapters are dedicated to nano-probes, steady state and transient spectroscopies. The highly ordered state, occurring in single crystals, is also discussed thoroughly. Finally, less conventional tools such as THz spectroscopy are discussed in detail. The book provides a useful introduction to the field for newcomers, and a valid reference for experienced researchers in the field.




Molecular Photophysics and Spectroscopy


Book Description

This book provides a fresh, photon‐based description of modern molecular spectroscopy and photophysics, with applications drawn from chemistry, biology, physics and materials science. The concise and detailed approach includes some of the most recent devel




Organic Photochemistry and Photophysics


Book Description

Featuring contributions from leading experts, Organic Photochemistry and Photophysics is a unique resource that addresses the organic photochemistry and photophysical behavior in aromatic molecules, thiocarbonyls, selected porphyrins, and metalloporphyrins. The book presents theories pertaining to radiative and radiationless transitions. It




Condensed-Phase Molecular Spectroscopy and Photophysics


Book Description

An introduction to one of the fundamental tools in chemical research—spectroscopy and photophysics in condensed-phase and extended systems A great deal of modern research in chemistry and materials science involves the interaction of radiation with condensed-phase systems such as molecules in liquids and solids as well as molecules in more complex media, molecular aggregates, metals, semiconductors, and composites. Condensed-Phase Molecular Spectroscopy and Photophysics was developed to fill the need for a textbook that introduces the basics of traditional molecular spectroscopy with a strong emphasis on condensed-phase systems. It also examines optical processes in extended systems such as metals, semiconductors, and conducting polymers, and addresses the unique optical properties of nanoscale systems. Condensed-Phase Molecular Spectroscopy and Photophysics begins with an introduction to quantum mechanics that sets a solid foundation for understanding the text's subsequent topics, including: Electromagnetic radiation and radiation-matter interactions Molecular vibrations and infrared spectroscopy Electronic spectroscopy Photophysical processes and light scattering Nonlinear and pump-probe spectroscopies Electron transfer processes Each chapter contains problems ranging from simple to complex, enabling readers to gradually build their skills and problem-solving abilities. Written for upper-level undergraduate and graduate courses in physical and materials chemistry, this text is uniquely designed to equip readers to solve a broad array of current problems and challenges in chemistry.




Modern Molecular Photochemistry


Book Description

During the last two decades the photochemistry of organic molecules has grown into an important and pervasive branch of organic chemistry. In Modern Molecular Photochemistry, the author brings students up to date with the advances in this field - the development of the theory of photoreactions, the utilization of photoreactions in synthetic sequences, and the advancement of powerful laser techniques to study the mechanisms of photoreactions.




Molecular Photonics


Book Description

New organic compounds with interesting and improved electronic and photonic properties are being reported on a daily basis, with new light-triggered materials being designed for molecular and bioelectronic devices. The relatively new concept of molecular photonics embraces photochemistry and photophysics, dealing with light-induced changes in materials and their electronic states as well as the field of optics. This volume begins with a background and survey of current light-related research fields, moving on to the fundamentals of molecular photonics. Subsequent chapters deal with the characteristics of photochemical reaction and typical processes of photophysical chemistry, while the last two chapters focus on the study of materials-induced changes in light. The most important concepts are summarized in overview tables to promote active understanding of new topics. .




The Photophysics behind Photovoltaics and Photonics


Book Description

From a leading researcher in optical spectroscopy and electronic properties of novel semiconductors comes this much-needed toolbox title to understand the concepts behind the spectroscopy of advanced organic materials and how they work. The book thus provides basic and practical knowledge on material photophysics for planning, carrying out and understanding experiments in spectroscopy. It contains a collection of simple practical rules for data analysis and interpretation, together with a list of experimental techniques, including the latest methods. Each topic is complemented by examples taken from forefront research on nanomaterials, photovoltaics and photonics, and each chapter includes a discussion, examples, topical boxes, tables and figures. The whole is rounded off by a bibliography for further reading, major references and appendixes containing theoretical derivation and numerical code. The result is a quick guide for the spectroscopist who needs to grasp the concept of the experiments.




Functional Molecular Materials


Book Description

The field of molecular materials represents an exciting playground for the design, tailoring, and combination of chemical building blocks as carriers of physical properties and aims at the understanding and development of novel functional molecular devices. Within this extraordinarily widespread framework, the realization of materials with the desired functionalities can only be achieved through a rational design strategy based on a solid understanding of the chemical and physical features of each constituting building block. This book provides a general overview of molecular materials, discussing their key features in a simple and organic way by focusing more on basic concepts rather than on specialized descriptions, in order to supply the non-expert reader with the immediate fundamental tools and hints to understand and develop research in this field. With this view, it is a step-by-step guide toward the preparation of functional molecular materials, where the knowledge and understanding so far attained by the scientific community through the investigation of significant archetypical examples is deconstructed down to the fundamental basis and then presented in reverse, from the base to the top.




Photochemistry and Photophysics


Book Description

Ein Lehrbuch eines exzellenten Autorenteams mit wissenschaftlicher Erfahrung und der Kompetenz im Schreiben didaktischer Texte zu allen Facetten der Photochemie und Photophysik: Grundlagen sowie ausgewählte Beispielen moderner Anwendungen und aus der heutigen Forschung.




Photochemistry and Photophysics of Polymeric Materials


Book Description

Presents the state of the technology, from fundamentals to new materials and applications Today's electronic devices, computers, solar cells, printing, imaging, copying, and recording technology, to name a few, all owe a debt to our growing understanding of the photophysics and photochemistry of polymeric materials. This book draws together, analyzes, and presents our current understanding of polymer photochemistry and photophysics. In addition to exploring materials, mechanisms, processes, and properties, the handbook also highlights the latest applications in the field and points to new developments on the horizon. Photochemistry and Photophysics of Polymer Materials is divided into seventeen chapters, including: Optical and luminescent properties and applications of metal complex-based polymers Photoinitiators for free radical polymerization reactions Photovoltaic polymer materials Photoimaging and lithographic processes in polymers Photostabilization of polymer materials Photodegradation processes in polymeric materials Each chapter, written by one or more leading experts and pioneers in the field, incorporates all the latest findings and developments as well as the authors' own personal insights and perspectives. References guide readers to the literature for further investigation of individual topics. Together, the contributions represent a series of major developments in the polymer world in which light and its energy have been put to valuable use. Not only does this reference capture our current state of knowledge, but it also provides the foundation for new research and the development of new materials and new applications.