Photosynthesis: Molecular Approaches to Solar Energy Conversion


Book Description

In the modern world, to meet increasing energy demands we need to develop new technologies allowing us to use eco-friendly carbon-neutral energy sources. Solar energy as the most promising renewable source could be the way to solve that problem, but it is variable depending on day time and season. From this side, the understanding of photosynthesis process could be of significant help for us to develop effective strategies of solar energy capturing, conversion, and storage. Plants, algae, and cyanobacteria perform photosynthesis, annually producing around 100 billion tons of dry biomass. Presently, the detailed studies of photosynthetic system structure make functional investigations of the photosynthetic process available, allowing scientists to construct artificial systems for solar energy transduction. This book summarizes exciting achievements in understanding of photosynthetic structures and mechanisms of this process made by world leaders in photosynthesis field, and contains information about modern ideas in development of revolutionary new technologies of energy conversion. Organized according to the natural sequence of events occurring during photosynthesis, the book includes information of both photosynthetic structures and mechanisms and its applications in bioenergetics issues.




Solar to Chemical Energy Conversion


Book Description

This book explains the conversion of solar energy to chemical energy and its storage. It covers the basic background; interface modeling at the reacting surface; energy conversion with chemical, electrochemical and photoelectrochemical approaches and energy conversion using applied photosynthesis. The important concepts for converting solar to chemical energy are based on an understanding of the reactions’ equilibrium and non-equilibrium conditions. Since the energy conversion is essentially the transfer of free energy, the process are explained in the context of thermodynamics.




Natural and Artificial Photosynthesis


Book Description

This technical book explores current and future applications of solar power as an unlimited source of energy that earth receives every day. Photosynthetic organisms have learned to utilize this abundant source of energy by converting it into high-energy biochemical compounds. Inspired by the efficient conversion of solar energy into an electron flow, attempts have been made to construct artificial photosynthetic systems capable of establishing a charge separation state for generating electricity or driving chemical reactions. Another important aspect of photosynthesis is the CO2 fixation and the production of high energy compounds. Photosynthesis can produce biomass using solar energy while reducing the CO2 level in air. Biomass can be converted into biofuels such as biodiesel and bioethanol. Under certain conditions, photosynthetic organisms can also produce hydrogen gas which is one of the cleanest sources of energy.




Photosynthesis: Solar Energy For Life


Book Description

Photosynthesis has been an important field of research for more than a century, but the present concerns about energy, environment and climate have greatly intensified interest in and research on this topic. Research has progressed rapidly in recent years, and this book is an interesting read for an audience who is concerned with various ways of harnessing solar energy.Our understanding of photosynthesis can now be said to have reached encyclopedic dimensions. There have been, in the past, many good books at various levels. Our book is expected to fulfill the needs of advanced undergraduate and beginning graduate students in branches of biology, biochemistry, biophysics, and bioengineering because photosynthesis is the basis of future advances in producing more food, more biomass, more fuel, and new chemicals for our expanding global human population. Further, the basics of photosynthesis are and will be used not only for the above, but in artificial photosynthesis, an important emerging field where chemists, researchers and engineers of solar energy systems will play a major role.




Solar Power And Fuels


Book Description

Solar Power and Fuels presents the proceedings of the First International Conference on the Photochemical Conversion and Storage of Solar Energy, held at the University of Western Ontario on August 24–28, 1976. This book explores the various possibilities for the photochemical conversion and storage of solar energy. Organized into eight chapters, this compilation of papers begins with an overview of the chemical utilization of solar energy through systems in which the quanta of radiation from the sun are utilized in atomic or molecular systems that undergo chemical changes. This text then examines the various ways in which biological/solar systems could be realized to varying degrees over the short and long term. Other chapters consider the electron-transfer processes in which excited states of molecules react with molecules. This book discusses as well the systems where the photochemical reaction occurs in the electrolyte. The final chapter deals with the intermittent availability of solar radiation. This book is a valuable resource for photochemists, photobiologists, and scientists.




Photosynthesis


Book Description

Life on earth depends on the photosynthetic use of solar energy by plants, and efforts to develop alternative sources of energy include a major thrust toward the use of photosynthesis to yield fuels. The study of photosynthesis is an especially convincing way of bringing together the disciplines of physics, chemistry, and biology and can be a valuable element in the teaching of biophysics and biochemistry. This book provides the only detailed modern treatment of the subject in a concise form. Part I outlines the historical development of the subject, emphasizing the chemical nature of photosynthesis and the roles of chlorophylls and other pigments. Part II reviews our present knowledge of the structure and components of photosynthetic tissues in relation to their function. Part III deals with the photo-chemistry of photosynthesis and with the patterns of chemical events, principally electron and proton transfer, that follow the photo-chemistry. Part IV treats the relationships of electron and proton transport to ATP formation, and the metabolic patterns of carbon assimilation. An epilogue exposes major areas of confusion and ignorance and indicates potentially fruitful directions of research, including the development of photosynthetic systems for solar energy conversion. Throughout the book, there are frequent digressions into those aspects of optics and molecular physics relevant to the subject matter. Suitable for upper undergraduate and graduate course use, this book is also sufficiently detailed to give professional scientists a perspective of the subject at the level of contemporary research.




Solar Energy Conversion


Book Description

A state-of-the art review on experimental and theoretical approaches to the study of interfacial electron and excitation transfer processes which are so crucial to solar energy conversion.




Photosynthesis


Book Description

Photosynthesis: From Plants to Nanomaterials in the Nanomaterial-Plant Interactions series, summarizes both the foundational mechanisms and latest advances in photosynthesis. With a strong emphasis on artificial photosynthesis, the book also analyzes the role of nanomaterials in energy production. Starting with an introduction to plant photosynthetic systems, chapters discuss the structure of light harvesting systems, energy transfer and membrane protein complexes. The book later describes the role of nanoparticles in photosynthesis, including agricultural applications, advances in nanobionics, and the impact of engineered nanomaterials. This book is an essential read for researchers and students interested in photosynthesis, bionanotechnology and nanomaterials. - Presents the latest advances in plant photosynthesis - Discusses the role of nanomaterials in energy production and other photosynthetic mechanisms - Highlights nanotechnology and artificial photosynthesis




Solar Hydrogen Production


Book Description

Solar Hydrogen Production: Processes, Systems and Technologies presents the most recent developments in solar-driven hydrogen generation methods. The book covers different hydrogen production routes, from renewable sources, to solar harvesting technologies. Sections focus on solar energy, presenting the main thermal and electrical technologies suitable for possible integration into solar-based hydrogen production systems and present a thorough examination of solar hydrogen technologies, ranging from solar-driven water electrolysis and solar thermal methods, to photo-catalytic and biological processes. All hydrogen-based technologies are covered, including data regarding the state-of-the art of each process in terms of costs, efficiency, measured parameters, experimental analyses, and demonstration projects. In the last part of the book, the role of hydrogen in the integration of renewable sources in electric grids, transportation sector, and end-user applications is assessed, considering their current status and future perspectives. The book includes performance data, tables, models and references to available standards. It is thus a key-resource for engineering researchers and scientists, in both academic and industrial contexts, involved in designing, planning and developing solar hydrogen systems. - Offers a comprehensive overview of conventional and advanced solar hydrogen technologies, including simulation models, cost figures, R&D projects, demonstration projects, test standards, and safety and handling issues - Encompasses, in a single volume, information on solar energy and hydrogen systems - Includes detailed economic data on each technology for feasibility assessment of different systems