Photosynthesis, Photorespiration, And Plant Productivity


Book Description

Photosynthesis, Photorespiration, and Plant Productivity provides a basis for understanding the main factors concerned with regulating plant productivity in plant communities. The book describes photosynthesis and other processes that affect the productivity of plants from the standpoint of enzyme chemistry, chloroplasts, leaf cells, and single leaves. Comprised of nine chapters, the book covers the biochemical and photochemical aspects of photosynthesis; respiration associated with photosynthetic tissues; and photosynthesis and plant productivity in single leaves and in stands. It provides illustrated and diagrammatic discussion and presents the concepts in outlined form to help readers understand the concepts efficiently. Moreover, this book explores the rates of enzymatic reactions and the detailed structure and function of chloroplasts and other organelles and their variability. It explains the mechanism of photosynthetic electron transport and phosphorylation and the importance of diffusive resistances to carbon dioxide assimilation, especially the role of stomata. It also discusses the importance of dark respiration in diminishing productivity; the differences in net photosynthesis that occur between many species and varieties; and the influence of climate to photosynthetic reactions. The book is an excellent reference for teachers, as well as undergraduate and graduate students in biology, plant physiology, and agriculture. Research professionals working on the disciplines of plant production and food supply will also find this book invaluable.




Biochemical Models of Leaf Photosynthesis


Book Description

Increasing concerns of global climatic change have stimulated research in all aspects of carbon exchange. This has restored interest in leaf-photosynthetic models to predict and assess changes in photosynthetic CO2 assimilation in different environments. This is a comprehensive presentation of the most widely used models of steady-state photosynthesis by an author who is a world authority. Treatments of C3, C4 and intermediate pathways of photosynthesis in relation to environment have been updated to include work on antisense transgenic plants. It will be a standard reference for the formal analysis of photosynthetic metabolism in vivo by advanced students and researchers.







Photosynthesis, Respiration, and Climate Change


Book Description

Changes in atmospheric carbon dioxide concentrations and global climate conditions have altered photosynthesis and plant respiration across both geologic and contemporary time scales. Understanding climate change effects on plant carbon dynamics is critical for predicting plant responses to future growing conditions. Furthermore, demand for biofuel, fibre and food production is rapidly increasing with the ever-expanding global human population, and our ability to meet these demands is exacerbated by climate change. This volume integrates physiological, ecological, and evolutionary perspectives on photosynthesis and respiration responses to climate change. We explore this topic in the context of modeling plant responses to climate, including physiological mechanisms that constrain carbon assimilation and the potential for plants to acclimate to rising carbon dioxide concentration, warming temperatures and drought. Additional chapters contrast climate change responses in natural and agricultural ecosystems, where differences in climate sensitivity between different photosynthetic pathways can influence community and ecosystem processes. Evolutionary studies over past and current time scales provide further insight into evolutionary changes in photosynthetic traits, the emergence of novel plant strategies, and the potential for rapid evolutionary responses to future climate conditions. Finally, we discuss novel approaches to engineering photosynthesis and photorespiration to improve plant productivity for the future. The overall goals for this volume are to highlight recent advances in photosynthesis and respiration research, and to identify key challenges to understanding and scaling plant physiological responses to climate change. The integrated perspectives and broad scope of research make this volume an excellent resource for both students and researchers in many areas of plant science, including plant physiology, ecology, evolution, climate change, and biotechnology. For this volume, 37 experts contributed chapters that span modeling, empirical, and applied research on photosynthesis and respiration responses to climate change. Authors represent the following seven countries: Australia (6); Canada (9), England (5), Germany (2), Spain (3), and the United States (12).




Photosynthesis and Production in a Changing Environment


Book Description

The majority of the world's people depend research work should be carried out at the local and regional level by locally trained on plants for their livelihood since they grow them for food, fuel, timber, fodder and people. many other uses. A good understanding Following the success of our earlier book of the practical factors which govern the (Techniques in Bioproductivity and Photo synthesis; Pergamon Press, 1985), which productivity of plants through the process of photosynthesis is therefore of paramount was translated into four major languages, importance, especially in the light of cur the editors and contributors have exten rent concern about global climate change sively revised the content and widened the and the response of both crops and natural scope of the text,· so it now bears a title ecosystems. in line with current concern over global The origins of this book lie in a series of climate change. · In particular, we have training courses sponsored by the United added chapters on remote sensing, con Nations Environment Programme (Project trolled-environment studies, chlorophyll No. FP/6108-88-0l (2855); 'Environment fluorescence, metabolite partitioning and changes and the productivity of tropical the use of mass isotopes, all of which grasslands'), with additional support from techniques are increasing in their applica many international and national agencies. tion and importance to this subject area.







Glyco-Engineering


Book Description

Conceived with the intention of providing an array of strategies and technologies currently in use for glyco-engineering distinct living organisms, this book contains a wide range of methods being developed to control the composition of carbohydrates and the properties of proteins through manipulations on the production host rather than in the protein itself. The first five sections deal with host-specific glyco-engineering and contain chapters that provide protocols for modifications of the glycosylation pathway in bacteria, yeast, insect, plants and mammalian cells, while the last two sections explore alternative approaches to host glyco-engineering and selected protocols for the analysis of the N-glycans and glyco-profiling by mass spectrometry. Written for the highly successful Methods in Molecular Biology series, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols and tips on troubleshooting and avoiding known pitfalls. Authoritative and extensive, Glyco-Engineering: Methods and Protocols offers vast options to help researchers to choose the expression system and approach that best suits their intended protein research or applications.




Sugarcane


Book Description

Physiology of Sugarcane looks at the development of a suite of well-established and developing biofuels derived from sugarcane and cane-based co-products, such as bagasse. Chapters provide broad-ranging coverage of sugarcane biology, biotechnological advances, and breakthroughs in production and processing techniques. This single volume resource brings together essential information to researchers and industry personnel interested in utilizing and developing new fuels and bioproducts derived from cane crops.




Photosynthesis


Book Description

“Photosynthesis: Plastid Biology, Energy Conversion and Carbon Assimilation” was conceived as a comprehensive treatment touching on most of the processes important for photosynthesis. Most of the chapters provide a broad coverage that, it is hoped, will be accessible to advanced undergraduates, graduate students, and researchers looking to broaden their knowledge of photosynthesis. For biologists, biochemists, and biophysicists, this volume will provide quick background understanding for the breadth of issues in photosynthesis that are important in research and instructional settings. This volume will be of interest to advanced undergraduates in plant biology, and plant biochemistry and to graduate students and instructors wanting a single reference volume on the latest understanding of the critical components of photosynthesis.




Plant Mitochondria: From Genome to Function


Book Description

Mitochondria in plants, as in other eukaryotes, play an essential role in the cell as the major producers of ATP via oxidative phosphorylation. However, mitochondria also play crucial roles in many other aspects of plant development and performance, and possess an array of unique properties which allow them to interact with the specialized features of plant cell metabolism. The two main themes running through the book are the interconnection between gene regulation and protein function, and the integration of mitochondria with other components of plant cells. The book begins with an overview of the dynamics of mitochondrial structure, morphology and inheritance. It then discusses the biogenesis of mitochondria, the regulation of gene expression, the mitochondrial genome and its interaction with the nucleus, and the targeting of proteins to the organelle. This is followed by a discussion of the contributions that mutations, involving mitochondrial proteins, have made to our understanding of the way the organelle interacts with the rest of the plant cell, and the new field of proteomics and the discovery of new functions. Also covered are the pathways of electron transport, with special attention to the non-phosphorylating bypasses, metabolite transport, and specialized mitochondrial metabolism. In the end, the impact of oxidative stress on mitochondria and the defense mechanisms, that are employed to allow survival, are discussed. This book is for the use of advanced undergraduates, graduates, postgraduates, and beginning researchers in the areas of molecular and cellular biology, integrative biology, biochemistry, bioenergetics, proteomics and plant and agricultural sciences.