Photosynthesis: Solar Energy For Life


Book Description

Photosynthesis has been an important field of research for more than a century, but the present concerns about energy, environment and climate have greatly intensified interest in and research on this topic. Research has progressed rapidly in recent years, and this book is an interesting read for an audience who is concerned with various ways of harnessing solar energy.Our understanding of photosynthesis can now be said to have reached encyclopedic dimensions. There have been, in the past, many good books at various levels. Our book is expected to fulfill the needs of advanced undergraduate and beginning graduate students in branches of biology, biochemistry, biophysics, and bioengineering because photosynthesis is the basis of future advances in producing more food, more biomass, more fuel, and new chemicals for our expanding global human population. Further, the basics of photosynthesis are and will be used not only for the above, but in artificial photosynthesis, an important emerging field where chemists, researchers and engineers of solar energy systems will play a major role.




Plant Energetics


Book Description

Emphasizing the physical and technological aspects of plant energetics, this comprehensive book covers a significant interdisciplinary research area for a broad range of investigators. Plant Energetics presentsthe thermodynamics of energy processes in plants, their interconnection and arrangement, and the estimation of intrinsic energy needs of the plant connected with performing various physiological functions. The book also demonstrates the role of electrical and electrochemical processes in the plants life cycle. Plant Energetics incorporates such diverse themes as thermodynamics, biophysics, and bioelectrochemistry with applications in horticulture and ecology. It also discusses the roles and mechanisms of both quantum and thermophysical processes of theconversion of solar energy by plants, including photosynthesis and long distance transport. Comprehensive details of value to basic and applied researchers dealing with photosynthesis, agriculture, horticulture, bioenergetics, biophysics, photobiology, and plant physiology make Plant Energetics an informative, one-stop resource that willsave time and energy in your search for the latest information. - Plant Energetics incorporates such diverse themes as thermodynamics, biophysics, and bioelectrochemistry with applications in horticulture and ecology. It also discusses the roles and mechanisms of both quantum and thermophysical processes of the conversion of solar energy by plants, including photosynthesis and long-distance transport - Extensive details of value to basic and applied researchers dealing with photosynthesis, agriculture, horticulture, bioenergetics, biophysics, photobiology, and plant physiology make Plant Energetics an informative, one-stop resource that will save you time and energy in your search for the latest information




Molecular To Global Photosynthesis


Book Description

Green plants and photosynthetic organisms are the Earth's natural photoconverters of solar energy. In future, biomass and bioenergy will become increasingly significant energy sources, making a contribution both to carbon dioxide abatement and to the security, diversity and sustainability of global energy supplies. In this book, experts provide a series of authoritative chapters on the intricate mechanisms of photosynthesis and the potential for using and improving photosynthetic organisms, plants and trees to sequester carbon dioxide and to provide fuel and useful chemicals for the benefit of man./a




Concepts of Biology


Book Description

Black & white print. Concepts of Biology is designed for the typical introductory biology course for nonmajors, covering standard scope and sequence requirements. The text includes interesting applications and conveys the major themes of biology, with content that is meaningful and easy to understand. The book is designed to demonstrate biology concepts and to promote scientific literacy.




Principles of Biology


Book Description

The Principles of Biology sequence (BI 211, 212 and 213) introduces biology as a scientific discipline for students planning to major in biology and other science disciplines. Laboratories and classroom activities introduce techniques used to study biological processes and provide opportunities for students to develop their ability to conduct research.




The Evolution of the Bioenergetic Processes


Book Description

The Evolution of the Bioenergetic Processes deals with the evolution of the bioenergetic processes, from fermentation to photosynthesis and respiration, and their interrelationships in prokaryotes and eukaryotes. Topics covered range from the origin of life to the evolution of eobionts, organisms, and energy-rich compounds. Fermentation, photoorganotrophy, and photosynthesis in bacteria and plants are also discussed. Comprised of 25 chapters, this book begins with an overview of energy and entropy in the biosphere, followed by a detailed treatment of the evolution of bioenergetics based on the pattern of the bioenergetic processes in extant organisms. The reader is then introduced to the events involved in the origin of life; the evolution of eobionts and organisms; and the origin of energy-rich compounds, particularly nucleotides of the adenylic acid system. Subsequent chapters focus on fermentation and photosynthesis; assimilation of carbon dioxide; photoorganotrophy, chemolithotrophy, and photolithotrophy; and aerobic and anaerobic respiration of prokaryotes. The book also considers the energy supply of protozoa and fungi before concluding with an analysis of the history of atmospheric oxygen. This monograph will be of interest to evolutionary biologists.




Photosynthesis


Book Description

Life on earth depends on the photosynthetic use of solar energy by plants, and efforts to develop alternative sources of energy include a major thrust toward the use of photosynthesis to yield fuels. The study of photosynthesis is an especially convincing way of bringing together the disciplines of physics, chemistry, and biology and can be a valuable element in the teaching of biophysics and biochemistry. This book provides the only detailed modern treatment of the subject in a concise form. Part I outlines the historical development of the subject, emphasizing the chemical nature of photosynthesis and the roles of chlorophylls and other pigments. Part II reviews our present knowledge of the structure and components of photosynthetic tissues in relation to their function. Part III deals with the photo-chemistry of photosynthesis and with the patterns of chemical events, principally electron and proton transfer, that follow the photo-chemistry. Part IV treats the relationships of electron and proton transport to ATP formation, and the metabolic patterns of carbon assimilation. An epilogue exposes major areas of confusion and ignorance and indicates potentially fruitful directions of research, including the development of photosynthetic systems for solar energy conversion. Throughout the book, there are frequent digressions into those aspects of optics and molecular physics relevant to the subject matter. Suitable for upper undergraduate and graduate course use, this book is also sufficiently detailed to give professional scientists a perspective of the subject at the level of contemporary research.




Natural and Artificial Photosynthesis


Book Description

This technical book explores current and future applications of solar power as an unlimited source of energy that earth receives every day. Photosynthetic organisms have learned to utilize this abundant source of energy by converting it into high-energy biochemical compounds. Inspired by the efficient conversion of solar energy into an electron flow, attempts have been made to construct artificial photosynthetic systems capable of establishing a charge separation state for generating electricity or driving chemical reactions. Another important aspect of photosynthesis is the CO2 fixation and the production of high energy compounds. Photosynthesis can produce biomass using solar energy while reducing the CO2 level in air. Biomass can be converted into biofuels such as biodiesel and bioethanol. Under certain conditions, photosynthetic organisms can also produce hydrogen gas which is one of the cleanest sources of energy.




Solar to Chemical Energy Conversion


Book Description

This book explains the conversion of solar energy to chemical energy and its storage. It covers the basic background; interface modeling at the reacting surface; energy conversion with chemical, electrochemical and photoelectrochemical approaches and energy conversion using applied photosynthesis. The important concepts for converting solar to chemical energy are based on an understanding of the reactions’ equilibrium and non-equilibrium conditions. Since the energy conversion is essentially the transfer of free energy, the process are explained in the context of thermodynamics.




Fundamentals of Materials for Energy and Environmental Sustainability


Book Description

How will we meet rising energy demands? What are our options? Are there viable long-term solutions for the future? Learn the fundamental physical, chemical and materials science at the heart of renewable/non-renewable energy sources, future transportation systems, energy efficiency and energy storage. Whether you are a student taking an energy course or a newcomer to the field, this textbook will help you understand critical relationships between the environment, energy and sustainability. Leading experts provide comprehensive coverage of each topic, bringing together diverse subject matter by integrating theory with engaging insights. Each chapter includes helpful features to aid understanding, including a historical overview to provide context, suggested further reading and questions for discussion. Every subject is beautifully illustrated and brought to life with full color images and color-coded sections for easy browsing, making this a complete educational package. Fundamentals of Materials for Energy and Environmental Sustainability will enable today's scientists and educate future generations.