Silicon Photonics


Book Description

This book gives a fascinating picture of the state-of-the-art in silicon photonics and a perspective on what can be expected in the near future. It is composed of a selected number of reviews authored by world leaders in the field and is written from both academic and industrial viewpoints. An in-depth discussion of the route towards fully integrated silicon photonics is presented. This book will be useful not only to physicists, chemists, materials scientists, and engineers but also to graduate students who are interested in the fields of microphotonics and optoelectronics.




Spintronics


Book Description

This new volume focuses on a new, exciting field of research: Spintronics, the area also known as spin-based electronics. The ultimate aim of researchers in this area is to develop new devices that exploit the spin of an electron instead of, or in addition to, its electronic charge. In recent years many groups worldwide have devoted huge efforts to research of spintronic materials, from their technology through characterization to modeling. The resultant explosion of papers in this field and the solid scientific results achieved justify the publication of this volume. Its goal is to summarize the current level of understanding and to highlight some key results and milestones that have been achieved to date. Semiconductor spintronics is expected to lead to a new generation of transistors, lasers and integrated magnetic sensors that can be used to create ultra-low power, high-speed memory, logic and photonic devices. In addition, development of novel devices such as spin-polarized light emitters, spin field effect transistors, integrated sensors and high-temperature electronics is anticipated. - Spintronics has emerged as one of the fastest growing areas of research - This text presents an in-depth examination of the most recent technological spintronic developments - Includes contributions from leading scholars and industry experts




Nanomagnetism and Spintronics


Book Description

The concise and accessible chapters of Nanomagnetism and Spintronics, Second Edition, cover the most recent research in areas of spin-current generation, spin-calorimetric effect, voltage effects on magnetic properties, spin-injection phenomena, giant magnetoresistance (GMR), and tunnel magnetoresistance (TMR). Spintronics is a cutting-edge area in the field of magnetism that studies the interplay of magnetism and transport phenomena, demonstrating how electrons not only have charge but also spin. This second edition provides the background to understand this novel physical phenomenon and focuses on the most recent developments and research relating to spintronics. This exciting new edition is an essential resource for graduate students, researchers, and professionals in industry who want to understand the concepts of spintronics, and keep up with recent research, all in one volume. - Provides a concise, thorough evaluation of current research - Surveys the important findings up to 2012 - Examines the future of devices and the importance of spin current




Advances in Solid State Physics 47


Book Description

The 2007 Spring Meeting of the Arbeitskreis Festkörperphysik was held in Regensburg, Germany, March 2007, in conjunction with the Deutsche Physikalische Gesellschaft. It was one of the largest physics meetings in Europe. The present volume 47 of the Advances in Solid State Physics contains written versions of a large number of the invited talks and gives an overview of the present status of solid state physics where low-dimensional systems are dominating.




Advances in Nanotechnology Research and Application: 2012 Edition


Book Description

Advances in Nanotechnology Research and Application / 2012 Edition is a ScholarlyEditions™ eBook that delivers timely, authoritative, and comprehensive information about Nanotechnology. The editors have built Advances in Nanotechnology Research and Application / 2012 Edition on the vast information databases of ScholarlyNews.™ You can expect the information about Nanotechnology in this eBook to be deeper than what you can access anywhere else, as well as consistently reliable, authoritative, informed, and relevant. The content of Advances in Nanotechnology Research and Application / 2012 Edition has been produced by the world’s leading scientists, engineers, analysts, research institutions, and companies. All of the content is from peer-reviewed sources, and all of it is written, assembled, and edited by the editors at ScholarlyEditions™ and available exclusively from us. You now have a source you can cite with authority, confidence, and credibility. More information is available at http://www.ScholarlyEditions.com/.




Fullerenes—Advances in Research and Application: 2012 Edition


Book Description

Fullerenes—Advances in Research and Application: 2012 Edition is a ScholarlyEditions™ eBook that delivers timely, authoritative, and comprehensive information about Fullerenes. The editors have built Fullerenes—Advances in Research and Application: 2012 Edition on the vast information databases of ScholarlyNews.™ You can expect the information about Fullerenes in this eBook to be deeper than what you can access anywhere else, as well as consistently reliable, authoritative, informed, and relevant. The content of Fullerenes—Advances in Research and Application: 2012 Edition has been produced by the world’s leading scientists, engineers, analysts, research institutions, and companies. All of the content is from peer-reviewed sources, and all of it is written, assembled, and edited by the editors at ScholarlyEditions™ and available exclusively from us. You now have a source you can cite with authority, confidence, and credibility. More information is available at http://www.ScholarlyEditions.com/.




Handbook of Magnetic Materials


Book Description

Magnetoelectronics is a novel and rapidly developing field. This new field is frequently referred to as spin-electronics or spintronics. It includes spin-utilizing devices that need neither a magnetic field nor magnetic materials. In semiconductor devices, the spin of the carriers has only played a very modest role so far because well established semiconductor devices are non-magnetic and show only negligible effects of spin. Nanoscale thin films and multilayers, nanocrystalline magnetic materials, granular films, and amorphous alloys have attracted much attention in the last few decades, in the field of basic research as well as in the broader field of materials science. Such heterogeneous materials display uncommon magnetic properties that virtually do no occur in bulk materials. This is true, in particular with respect to surface (interface) magnetic anisotropy and surface (interface) magnetostrictive strains and giant magnetoresistance. The local atomic arrangement at the interface differs strongly from that in the bulk. The local symmetry is lowered, so that some interactions are changed or are missing altogether. The interface atoms may envisaged as forming a new phase and some properties characteristic of this phase may become predominant for the entire system. This becomes particularly evident in the case of interfacial magnetostriction which can lead to a decrease (almost to zero) or to an increase(over the bulk value) of the resulting magnetostriction of the nanoscale system. There are various forms of the interplay of magnetism and superconductivity, which can be divided into competition and coexistence phenomena. For instance, a strong competition is found in high-Tc cuprates. In these materials, depending on the doping rate, either Neel-type antiferromagnetism moments (e.g. from 4f-elements) with superconductivity is known to occur in systems where the concentration of these moments is sufficiently small or where they are antiferromagnetically ordered and only weakly coupled to the conduction electrons. During the years, intermetallic gadolinium compounds have adopted a special position in the study of 4f electron magnetism. The reason for this is the fact that the gadolinium moment consists only of a pure spin moment, orbital contributions to the moment being absent. As a consequence, gadolinium compounds have been regarded as ideal test benches for studying exchange interactions, free from complications due to crystal effects. Volume 14 of the Handbook of Magnetic Materials, as the preceding volumes, has a dual purpose. As a textbook it is intended to be of assistance to those who wish to be introduced to a given topic in the field of magnetism without the need to read the vast amount of literature published. As a work of reference it is intended for scientists active in magnetism research. To this dual purpose, volume 14 of the Handbook is composed of topical review articles written by leading authorities. In each of these articles an extensive description is given in graphical as well as tabular form, much emphasis being placed on the discussion of the experimental material in the framework of physics, chemistry and material science.




Optical Spectroscopy of Semiconductor Nanostructures


Book Description

This volume looks at optical spectroscopy of semiconductir nanostructures. Some of the topics it covers include: kingdom of nanostructures; quantum confinement in low-dimensional systems; resonant light reflection; and transmission and absorption.




II-VI Semiconductor Materials and their Applications


Book Description

II-VI Semiconductor Materials and Their Applications deals with II-VI compound semiconductors and the status of the two areas of current optoelectronics applications: blue-green emitters and IR detectors. Specifically, the growth, charactrtization, materials and device issues for these two applications are described. Emphasis is placed on the wide bandgap emitters where much progress has occurred recently.The book also presents new directions that have potential, future applications in optoelectronics for II-VI materials. In particular, it discusses the status of dilute magnetic semiconductors for mango-optical and electromagnetic devices, nonlinear optical properties, photorefractive effects and new materials and physics phenomena, such as self-organized, low-dimensional structures.II_VI Semiconductor Materials and Their Applications is a valuable reference book for researchers in the field as well as a textbook for materials science and applied physics courses.




Advances in Quantum Chemistry


Book Description

Advances in Quantum Chemistry presents surveys of current developments in this rapidly developing field. With invited reviews written by leading international researchers, each presenting new results, it provides a single vehicle for following progress in this interdisciplinary area. - Publishes articles, invited reviews and proceedings of major international conferences and workshops - Written by leading international researchers in quantum and theoretical chemistry - Highlights important interdisciplinary developments