Physical and Dynamical Meteorology


Book Description

First published in 1934, and then in a second edition in 1939, this book reviews theoretical meteorology at the time. Where theory failed to explain phenomena, the author limited himself to a description of the phenomena and an indication of such theory as was felt to be helpful.




An Introduction to Dynamic Meteorology


Book Description

For advanced undergraduate and beginning graduate students in atmospheric, oceanic, and climate science, Atmosphere, Ocean and Climate Dynamics is an introductory textbook on the circulations of the atmosphere and ocean and their interaction, with an emphasis on global scales. It will give students a good grasp of what the atmosphere and oceans look like on the large-scale and why they look that way. The role of the oceans in climate and paleoclimate is also discussed. The combination of observations, theory and accompanying illustrative laboratory experiments sets this text apart by making it accessible to students with no prior training in meteorology or oceanography. * Written at a mathematical level that is appealing for undergraduates and beginning graduate students * Provides a useful educational tool through a combination of observations and laboratory demonstrations which can be viewed over the web * Contains instructions on how to reproduce the simple but informative laboratory experiments * Includes copious problems (with sample answers) to help students learn the material.




An Introduction to Dynamic Meteorology


Book Description

MATLAB scripts (M-files) are provided on the accompanying CD.




Atmospheric Dynamics


Book Description

Mankin Mak's textbook provides a self-contained course on atmospheric dynamics. The first half is suitable for senior undergraduates, and develops the physical, dynamical and mathematical concepts at the fundamental level. The second half of the book is aimed at more advanced students who are already familiar with the basics. The contents have been developed from many years of the author's teaching at the University of Illinois. Discussions are supplemented with schematics, weather maps and statistical plots of the atmospheric general circulation. Students often find the connection between theoretical dynamics and atmospheric observation somewhat tenuous, and this book demonstrates a strong connection between the key dynamics and real observations. This textbook is an invaluable asset for courses in atmospheric dynamics for advanced students and researchers in atmospheric science, ocean science, weather forecasting, environmental science, and applied mathematics. Some background in mathematics, physics and basic atmospheric science is assumed.




The Dynamic Meteorology of the Stratosphere and Mesosphere


Book Description

Interest in the meteorology of the stratosphere and mesophere has been simulated in the past few years by concerns over possible depletion of the ozone layer as a result of reactions involving pollutants introduced by human activities. Concurrently there has been an upsurge in research on various aspects of the meteorology of the stratosphere. This monograph provides an account of the fundamental dynamical processes which control the general circulation of the stratosphere and mesophere and are thus responsible for the transport of trace substances in that region of the atmosphere. Principles necessary for understanding the dynamics of large-scale motions in the stratosphere and mesosphere are systematically developed so that this monograph should prove useful not only as a reference work for research scientists, but as a textbook for courses in dynamic meteorology of the upper atmosphere.




Mid-Latitude Atmospheric Dynamics


Book Description

This exciting text provides a mathematically rigorous yet accessible textbook that is primarily aimed at atmospheric science majors. Its accessibility is due to the texts emphasis on conceptual understanding. The first five chapters constitute a companion text to introductory courses covering the dynamics of the mid-latitude atmosphere. The final four chapters constitute a more advanced course, and provide insights into the diagnostic power of the quasi-geostrophic approximation of the equations outlined in the previous chapters, the meso-scale dynamics of thefrontal zone, the alternative PV perspective for cyclone interpretation, and the dynamics of the life-cycle of mid-latitude cyclones. Written in a clear and accessible style Features real weather examples and global case studies Each chapter sets out clear learning objectives and tests students’ knowledge with concluding questions and answers A Solutions Manual is also available for this textbook on the Instructor Companion Site www.wileyeurope.com/college/martin. “...a student-friendly yet rigorous textbook that accomplishes what no other textbook has done before... I highly recommend this textbook. For instructors, this is a great book if they don’t have their own class notes – one can teach straight from the book. And for students, this is a great book if they don’t take good class notes – one can learn straight from the book. This is a rare attribute of advanced textbooks.” Bulletin of the American Meteorological Society (BAMS), 2008




Atmospheric and Oceanic Fluid Dynamics


Book Description

Fluid dynamics is fundamental to our understanding of the atmosphere and oceans. Although many of the same principles of fluid dynamics apply to both the atmosphere and oceans, textbooks tend to concentrate on the atmosphere, the ocean, or the theory of geophysical fluid dynamics (GFD). This textbook provides a comprehensive unified treatment of atmospheric and oceanic fluid dynamics. The book introduces the fundamentals of geophysical fluid dynamics, including rotation and stratification, vorticity and potential vorticity, and scaling and approximations. It discusses baroclinic and barotropic instabilities, wave-mean flow interactions and turbulence, and the general circulation of the atmosphere and ocean. Student problems and exercises are included at the end of each chapter. Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-Scale Circulation will be an invaluable graduate textbook on advanced courses in GFD, meteorology, atmospheric science and oceanography, and an excellent review volume for researchers. Additional resources are available at www.cambridge.org/9780521849692.




Applied Atmospheric Dynamics


Book Description

The weather can be a cause of disruption, despair and even danger everywhere around the world at one time or another. Even when benign it is a source of constant fascination. Applied Atmospheric Dynamics connects this interest with the theoretical underpinnings of fluid dynamics; linking real physical events as diverse as Hurricane Katrina and the strong katabatic winds of Antarctica, with quantitative conceptual models of atmospheric behaviour. Assuming only basic calculus the book provides a physical basis for understanding atmospheric motions around the globe as well as detailing the advances that have led to a greater understanding of weather and climate. The accompanying supplementary CD-ROM features colour graphics, maps, databases, animations, project materials, as well as weather data tips. Covers the standard theoretical principles of atmospheric dynamics and applies the theory to global real world examples Assumes only non-vector based calculus Features supplementary CD-ROM with electronic versions of all figures, case study data and possible term projects An invaluable text for students of Meteorology, Atmospheric Science, Geography and Environmental Science A Solutions Manual is also available for this textbook on the Instructor Companion Site www.wileyeurope.com/college/lynch




Physical Principles Of Meteorology And Environmental Physics: Global, Synoptic And Micro Scales


Book Description

This book starts with the big picture, relating Einstein's famous mass-energy formula E = mc2 to the global climate; and then proceeds to examine the structure and dynamics of the atmosphere, from the synoptic scale through to the microscale, including the interaction of living things with their environment. It covers a range of topics from the laboratory to the field, including the analysis of thermodynamic diagrams and dispersion of pollutants, simple micrometeorological experiments on a sports field, as well as a detailed study on the measurement of carbon dioxide exchange between the atmosphere and tropical rainforests.Straightforward, simple models and short arguments are used wherever possible to promote physical understanding, for example, in the discussion of the greenhouse effect. The aim is to bring the reader to the point where he or she is able to understand and analyze weather charts in daily use around the world; obtain an appreciation of current experimental techniques; and also make informed, quantitative estimates in relation to current issues surrounding the current debate on climate change.




Geophysik II / Geophysics II


Book Description

45 downwards because (j on the average increases with height; but this conclusion does not follow from (18.3) when the dependency of Kc upon ~o is taken into consideration. s 2 ERTELl and PRIESTLEY and SWINBANK have shown that the upward eddy flux of sensible heat must be larger than indicated by (18.3), because this formula does not account for the fact that rising eddies are systematically warmer than sinking eddies because of the effect of buoyancy. The reader is referred to the reviews by SUTTON [22], [23] and PRIESTLEY and SHEP PARD [15) for further details concerning eddy-flux of heat and turbulent diffusion. 19. RICHARDSON'S criterion. The right-hand side of (15.10) represents the rate of production of eddy energy. The last term represents energy loss by dissipation; in order that the eddy energy shall be maintained, it is therefore necessary that P div V" - (! V" v" . grad. v > O.