High Temperature Experiments in Chemistry and Materials Science


Book Description

Cutting edge high temperature materials include high temperature superconductors, solid oxide fuel cells, thermoelectric materials and ultrahigh temperature construction materials (including metals, cermets and ceramics) and have applications in key areas such as energy, transportation and space technologies. This book introduces the concepts which underpin research into these critical materials including thermodynamics, kinetics and various physical, chemical and modelling techniques with a focus on practical “how to” methods and covers: Introduction to High Temperature Research Basic Design of High Temperature Furnaces Temperature Measurement Radiation Pyrometry Refractory Materials in the Laboratory Vacuum in Theory and Practice The Design of Vacuum Furnaces and Thermobalances With highly detailed instrument illustrations and an emphasis on the control and measurement of the fundamental properties of temperature, pressure and mass, High Temperature Experiments in Chemistry and Materials Science provides a practical reference on high temperature measurements, for researchers, advanced students and those working in academic or industrial laboratories. Introduction to High Temperature Research Basic Design of High Temperature Furnaces Temperature Measurement Radiation Pyrometry Refractory Materials in the Laboratory Vacuum in Theory and Practice The Design of Vacuum Furnaces and Thermobalances




Interfacial Physical Chemistry of High-Temperature Melts


Book Description

This English translation of a well-known Japanese book covers interfacial physicochemistry in materials science, especially for iron- and steelmaking processes. Interfacial Physical Chemistry of High-Temperature Melts bridges the gap between the basics and applications of physicochemistry. The book begins with an overview of the fundamentals of interfacial physical chemistry and discusses surface tension, describing the derivation of important equations to guide readers to a deep understanding of the phenomenon. The book then goes on to introduce interfacial properties of high-temperature melts, especially the Marangoni effect, and discusses applications to materials processing at high temperature focusing on recent research results by the author and the co-workers. This book is aimed at researchers, graduate students, and professionals in materials processing. Video clips of in-situ observation including experiments under microgravity condition and x-ray observation are available for download on the publisher's website to allow for a deeper understanding.




Physics and Chemistry at Low Temperatures


Book Description

Covering the fundamental and practical aspects of the processes of thermodynamics as well as experimental and theoretical methods used in the field, this informed examination highlights how the development of thermodynamics has been essentially based on the potentials of cryogenic technology. Penned by leading scientists with strong experience in the field who predict that many useful and exciting phenomena remain to be discovered in the future, this well-researched educational resource contains both a history of and practical recommendations for the ongoing study of matter at low temperature.










Materials Chemistry at High Temperatures


Book Description

Conference Overview and the Role of Chemistry in High-Temperature Materials Science and Technology LEO BREWER Department of ChemistIy, University of California, and Materials and Chemical Sciences Division, Lawrence Berkeley Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 I don't want to compete with the fascinating historic account that John Drowart gave us, but I would like to go through the history of high don't get the reaction that I get from temperature symposia. I hope I some of my classes when I say, "Remember when such-and-such hap pened during the War?" And I get this blank look, and one of the students will say, "I wasn't born until after the Korean War. " Neverthe less, during World War II, many people in the high-temperature field had their first initiation. But there was one handicap. Owing to security measures, they were not able to interact with one another. Following the War, it was recognized that the high-temperature field was going to expand to meet the demands for materials with unique properties. To meet the demands for new fabrication techniques, it was important to establish better communications among various people. High-tempera ture symposia were established at that time and have continued very frequently, and I'd like to point out why they are especially important for this field. One problem is that it is not easy to work at high temperatures.




Materials Chemistry at High Temperatures


Book Description

Conference Overview and the Role of Chemistry in High-Temperature Materials Science and Technology LEO BREWER Department of ChemistIy, University of California, and Materials and Chemical Sciences Division, Lawrence Berkeley Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 I don't want to compete with the fascinating historic account that John Drowart gave us, but I would like to go through the history of high don't get the reaction that I get from temperature symposia. I hope I some of my classes when I say, "Remember when such-and-such hap pened during the War?" And I get this blank look, and one of the students will say, "I wasn't born until after the Korean War. " Neverthe less, during World War II, many people in the high-temperature field had their first initiation. But there was one handicap. Owing to security measures, they were not able to interact with one another. Following the War, it was recognized that the high-temperature field was going to expand to meet the demands for materials with unique properties. To meet the demands for new fabrication techniques, it was important to establish better communications among various people. High-tempera ture symposia were established at that time and have continued very frequently, and I'd like to point out why they are especially important for this field. One problem is that it is not easy to work at high temperatures.