Physical Models for Quantum Dots


Book Description

Since the early 1990s, quantum dots have become an integral part of research in solid state physics for their fundamental properties that mimic the behavior of atoms and molecules on a larger scale. They also have a broad range of applications in engineering and medicines for their ability to tune their electronic properties to achieve specific functions. This book is a compilation of articles that span 20 years of research on comprehensive physical models developed by their authors to understand the detailed properties of these quantum objects and to tailor them for specific applications. Far from being exhaustive, this book focuses on topics of interest for solid state physicists, materials scientists, engineers, and general readers, such as quantum dots and nanocrystals for single-electron charging with applications in memory devices, quantum dots for electron-spin manipulation with applications in quantum information processing, and finally self-assembled quantum dots for applications in nanophotonics.




Physical Models for Quantum Wires, Nanotubes, and Nanoribbons


Book Description

A compilation of articles that span more than 30 years of research on developing comprehensive physical models. Address the effect of quantum confinement on lattice vibrations, carriers scattering rates, and charge transport and present practical examples of solutions to the Boltzmann equation. Topics on quantum transport and spin effects in unidimensional molecular structures such as carbon nanotubes and graphene nanoribbons.




Physical Models for Quantum Wires, Nanotubes, and Nanoribbons


Book Description

Quantum wires are artificial structures characterized by nanoscale cross sections that contain charged particles moving along a single degree of freedom. With electronic motions constrained into standing modes along with the two other spatial directions, they have been primarily investigated for their unidimensional dynamics of quantum-confined charge carriers, which eventually led to broad applications in large-scale nanoelectronics. This book is a compilation of articles that span more than 30 years of research on developing comprehensive physical models that describe the physical properties of these unidimensional semiconductor structures. The articles address the effect of quantum confinement on lattice vibrations, carrier scattering rates, and charge transport as well as present practical examples of solutions to the Boltzmann equation by analytical techniques and by numerical simulations such as the Monte Carlo method. The book also presents topics on quantum transport and spin effects in unidimensional molecular structures such as carbon nanotubes and graphene nanoribbons in terms of non-equilibrium Green’s function approaches and density functional theory.




Physical Models of Semiconductor Quantum Devices


Book Description

The science and technology relating to nanostructures continues to receive significant attention for its applications to various fields including microelectronics, nanophotonics, and biotechnology. This book describes the basic quantum mechanical principles underlining this fast developing field. From the fundamental principles of quantum mechanics to nanomaterial properties, from device physics to research and development of new systems, this title is aimed at undergraduates, graduates, postgraduates, and researchers.




Quantum Dot Heterostructures


Book Description

Da die Nachfrage nach immer schnelleren und kleineren Halbleiterbauelementen stetig wächst, sind Quanten-Dots und -Pyramiden rasant in den Mittelpunkt der Halbleiterforschung gerückt. Dieses Buch vermittelt einen umfassenden Überblick über den aktuellen Forschungsstand auf diesem Gebiet. Behandelt werden u.a. Fragen, wie Strukturen aufgebaut, wie sie charakterisiert werden und wie sie die Leistungsfähigkeit der Bauelemente bestimmen. (11/98)




Colloidal Quantum Dot Optoelectronics and Photovoltaics


Book Description

Captures the most up-to-date research in the field, written in an accessible style by the world's leading experts.




Spins in Optically Active Quantum Dots


Book Description

Filling a gap in the literature, this up-to-date introduction to the field provides an overview of current experimental techniques, basic theoretical concepts, and sample fabrication methods. Following an introduction, this monograph deals with optically active quantum dots and their integration into electro-optical devices, before looking at the theory of quantum confined states and quantum dots interacting with the radiation field. Final chapters cover spin-spin interaction in quantum dots as well as spin and charge states, showing how to use single spins for break-through quantum computation. A conclusion and outlook round off the volume. The result is a primer providing the essential basic knowledge necessary for young researchers entering the field, as well as semiconductor and theoretical physicists, PhD students in physics and material sciences, electrical engineers and materials scientists.




Quantum Dots


Book Description

In this book, leading experts on quantum dot theory and technology provide comprehensive reviews of all aspects of quantum dot systems. The following topics are covered: (1) energy states in quantum dots, including the effects of strain and many-body effects; (2) self-assembly and self-ordering of quantum dots in semiconductor systems; (3) growth, structures, and optical properties of III-nitride quantum dots; (4) quantum dot lasers.




Self-Assembled Quantum Dots


Book Description

This multidisciplinary book provides up-to-date coverage of carrier and spin dynamics and energy transfer and structural interaction among nanostructures. Coverage also includes current device applications such as quantum dot lasers and detectors, as well as future applications to quantum information processing. The book will serve as a reference for anyone working with or planning to work with quantum dots.




Fingerprints in the Optical and Transport Properties of Quantum Dots


Book Description

The book "Fingerprints in the optical and transport properties of quantum dots" provides novel and efficient methods for the calculation and investigating of the optical and transport properties of quantum dot systems. This book is divided into two sections. In section 1 includes ten chapters where novel optical properties are discussed. In section 2 involve eight chapters that investigate and model the most important effects of transport and electronics properties of quantum dot systems This is a collaborative book sharing and providing fundamental research such as the one conducted in Physics, Chemistry, Material Science, with a base text that could serve as a reference in research by presenting up-to-date research work on the field of quantum dot systems.