Physical Principles of Chirality in NMR


Book Description

How can we study one of the most elusive molecular properties, chirality, using nuclear interactions with the magnetic field that are apparently insensitive to handedness? This book answers this question from the physicochemical point of view by providing a clear, coherent, and comprehensive review of methods used in NMR studies of chirality. Presented arguments based on fundamental physical and chemical laws and in-depth descriptions of new methods utilizing purely physical interactions are mainly addressed to spectroscopists in both academia and industry. The introductory chapters provide the reader with the basics of NMR spectroscopy as a tool for the study of chiral compounds, and those more interested in the methods of chiral discrimination will benefit from the brief description of their common points and reasons why some of them may or may not work. In the following chapters, the book shows rapid progress in a newly emerging field of chirality-sensitive NMR, in particular, a search for effects that give direct information about the absolute configuration of a molecule.




NMR Spectroscopy


Book Description

Nuclear magnetic resonance (NMR) spectroscopy is one of the most powerful and widely used techniques in chemical research for investigating structures and dynamics of molecules. Advanced methods can even be utilized for structure determinations of biopolymers, for example proteins or nucleic acids. NMR is also used in medicine for magnetic resonance imaging (MRI). The method is based on spectral lines of different atomic nuclei that are excited when a strong magnetic field and a radiofrequency transmitter are applied. The method is very sensitive to the features of molecular structure because also the neighboring atoms influence the signals from individual nuclei and this is important for determining the 3D-structure of molecules. This new edition of the popular classic has a clear style and a highly practical, mostly non-mathematical approach. Many examples are taken from organic and organometallic chemistry, making this book an invaluable guide to undergraduate and graduate students of organic chemistry, biochemistry, spectroscopy or physical chemistry, and to researchers using this well-established and extremely important technique. Problems and solutions are included.




NMR Spectroscopy


Book Description

Auch die komplett überarbeitete 3. Auflage dieses bewährten Lehrbuchs überzeugt durch Klarheit, eine didaktisch gelungene Aufbereitung des Stoffes und ein hohes Maß an Praxisbezug. Das komplexe Thema wird mit einem Mindestmaß an Mathematik erklärt - ideal für Studenten, die die Grundlagen der NMR-Spektroskopie verstehen und das Verfahren effizient und präzise anwenden möchten. Die neue Auflage ist vollständig überarbeitet und aktualisiert. So sind rund 25% der Inhalte neu, darunter auch Kapitel zur biologischen NMR-Spektroskopie sowie viele Beispiele aus der organischen Chemie. Daher stellt dieses Fachbuch auch für Studenten in Grund- und Hauptstudium verwandter Fachrichtungen wie der Biochemie, Medizinischen Chemie, Pharmazeutischen Chemie und Materialwissenschaften einen wertvollen Leitfaden dar. Außerdem findet der Leser eine Vielzahl von Übungsaufgaben mit zugehörigen Lösungen.




Physical Inorganic Chemistry


Book Description

Physical Inorganic Chemistry contains the fundamentals of physical inorganic chemistry, including information on reaction types, and treatments of reaction mechanisms. Additionally, the text explores complex reactions and processes in terms of energy, environment, and health. This valuable resource closely examines mechanisms, an under-discussed topic. Divided into two sections, researchers, professors, and students will find the wide range of topics, including the most cutting edge topics in chemistry, like the future of solar energy, catalysis, environmental issues, climate changes atmosphere, and human health, essential to understanding chemistry.




Amino Acids, Peptides and Proteins


Book Description

In an ever-increasing domain of activity Amino Acids Peptides and Proteins provides an annual compilation of the world's research effort into this important area of biological chemistry. Volume 29 provides a review of literature published during 1996. Comprising a comprehensive review of significant developments at this biology/chemistry interface each volume opens with an overview of amino acids and their applications. Work on peptides is reviewed over several chapters ranging from current trends in their synthesis and conformational and structural analysis to peptidomimetics and the discovery of peptide-related molecules in nature. The application of advanced techniques in structural elucidation is incorporated into all chapters whilst periodic chapters on metal complexes of amino acids, peptides and beta-lactams extend the scope of coverage. Efficient searching of specialist topics is facilitated by the sub-division of chapters into discrete subject areas allowing annual trends to be monitored. All researchers in the pharmaceutical and allied industries and at the biology/chemistry interface in academia will find this an indispensable reference source.




Principles of Physical Chemistry


Book Description

Core textbook showcasing the broad scope and coherence of physical chemistry Principles of Physical Chemistry introduces undergraduate students to the concepts and methods of physical chemistry, which are fundamental to all of Chemistry. In their unique approach, the authors guide students along a logically consistent pathway from the principles of quantum mechanics and molecular structure to the properties of ensembles and supramolecular machines, with many examples from biology and nanoscience. By systematically proceeding from atoms to increasingly complex forms of matter, the book elucidates the connection between recognizable paradigms and modern chemistry research in a student-friendly manner. To promote intuition and understanding for beginning students, the text introduces concepts before proceeding to more rigorous treatments. Rigorous proofs and derivations are provided, as electronic supplements, for more advanced students. The book poses over 900 exercises and problems to help the student learn and master methods for physicochemical reasoning. Computational supplementary material, including Fortran simulations, MathCAD exercises, and Mathematica programs, are included on a companion website. Some topics discussed in the text are: Electronic structure and Variational Principle, including Pauli exclusion, spin-orbit interactions, and electron confinement in quantum dots. Chemical bonding and molecular structure, including electron tunneling, comparison of electron-in-a-box models and electron orbital methods, and the mechanics of chemical bonds. Absorption and emission of light, including transition dipoles for π-electron systems, coupled chromophores, excitons, and chiroptical activity. Statistical description of molecular ensembles, including microscopic interpretations of phase transitions, entropy, work, and heat. Chemical equilibria, including statistical description of equilibrium constants, electrochemistry, and the exposition of fundamental reaction types. Reaction kinetics and reaction dynamics, including nonlinear coupled reactions, femtochemistry, and solvent effects on reactions. Physicochemical properties of macromolecules and the principles of supramolecular assemblies, including polymer dynamics and chemical control of interfaces. The logic of supramolecular machines and their manipulation of photon, electron, and nuclear motion. With its highly coherent and systematic approach to the subject, Principles of Physical Chemistry is an ideal textbook and resource for students in undergraduate physical chemistry courses, especially those in programs of study related to chemistry, engineering, and molecular and chemical biology.




Principles and Applications of Stereochemistry


Book Description

A thorough understanding of stereochemistry is essential for the comprehension of almost all aspects of modern organic chemistry. It is also of great significance in many biochemical and medicinal disciplines, since the stereoisomers of a compound can have dramatically different biological properties. This text explains how the different properties of stereoisomers of a compound arise, and what processes can be used to prepare and analyze stereoisomerically pure compounds. It also presents prominent coverage of the stereochemistry of inorganic and organometallic compounds, which is likely to increase in importance, as these compounds are used as symmetric catalysts in asymmetric synthesis. Modern stereochemical terminology is used throughout, although reference is also made to older terms which are still widely used. A set of problems at the end of each chapter aims to further the reader's understanding of how the content can be applied. The book is designed mainly as a textbook for undergraduate students and as a reference source for more advanced levels, but is also intended for academic and professional organic chemists.




Stereochemistry of Organic Compounds


Book Description

During Recent Years, Stereochemistry Has Undergone A Phenomenal Growth Both In Theory And Practice, With A Concomitant Increase Of Interest Among The Organic Chemists, Biological Chemists, Medicinal Chemists, And Pharmacologists. The Present Text Provides An Up-To-Date, Coherent; And Comprehensive Account Of The Subject Starting From The Fundamentals And Leading Up To The Latest Development As Far As Practicable. Emphasis Has Been Placed On Symmetry-Based Approach To Molecular Chirality, Stereochemical Terminologies (Modern Stereochemistry Is Replete, With Them), Topicity And Prostereoisomerism, Conformational Analysis, Dynamic Stereochemistry, Chiroptical Properties, And Assignment Of Absolute Configuration To Chiral Molecules.Dynamic Stereochemistry Has Been Discussed With Reference To Conformation-Reactivity Correlation, Stereoselective Syntheses, And Pericyclic Reactions. A Large Cross Section Of Organic Reactions With Stereochemical Implication Has Been Incorporated. Attempts Have Been Made To Familiarise The Readers With Modem Instrumental Techniques, Nuclear Magnetic Resonance In Particular, Used For Stereochemical Investigation. Each Chapter Is Provided With A Summary Which Highlights The Main Points Of The Text. Selective References, Mostly Of Textbooks, Monographs, Review Articles, And Significant Original Papers Have Been Given Extending Sometimes To Early 1991.The Book Is Expected To Fulfil The Long-Felt Need For A Comprehensive Text On Modern Organic Stereochemistry Which Is Conspicuously Absent Since The Publication Of Professor Eliels Book In 1962. The Text May Be Adopted At Any Stage Of The University Teaching And At The Same Time Be Useful To The Practising Organic Chemists.




Chiroptical Spectroscopy


Book Description

This book details chiroptical spectroscopic methods: electronic circular dichroism (ECD), optical rotatory dispersion (ORD), vibrational circular dichroism (VCD), and vibrational Raman optical activity (VROA). For each technique, the text presents experimental methods for measurements and theoretical methods for analyzing the experimental data. It also includes a set of experiments that can be adopted for undergraduate teaching laboratories. Each chapter is written in an easy-to-follow format for novice readers, with necessary theoretical formalism in appendices for advanced readers.




Phosphorous-31 NMR


Book Description

Phosphorous-31 NMR: Principles and Applications focuses on the evolution of phosphorus-31 nuclear magnetic resonance (NMR) as a widely applied spectroscopic probe of the structure and dynamics of phosphorus-containing compounds. The selection first offers information on the principles and empirical observations of phosphorus-31 chemical shifts and the principles and applications of phosphorus-31 spin-spin coupling constants. Discussions focus on introduction and basic principles, directly bonded phosphorus coupling constants, and two-bond and three-bond coupling constants. The text then ponders on phosphorus-31 NMR of enzyme complexes and paramagnetic probes of enzyme complexes with phosphorus-containing compounds. The manuscript elaborates on the use of chiral thiophosphates and the stereochemistry of enzymatic phosphoryl transfer and DNA and RNA conformations. Topics include helix-coil transitions, sequence dependence of double-stranded DNA conformations, dynamic behavior of RNA and DNA, biological and genetic significance, and stereochemical problems studied with chiral thiophosphates. The conformation and dynamics of nucleic acids and phosphoproteins, relaxation behavior of nucleic acids, and theory and applications of solid-state phosphorus-31 NMR to nucleic acids are also discussed. The selection is a valuable reference for readers interested in the principles and applications of phosphorus-31 nuclear magnetic resonance.