Physical Principles Of Meteorology And Environmental Physics: Global, Synoptic And Micro Scales


Book Description

This book starts with the big picture, relating Einstein's famous mass-energy formula E = mc2 to the global climate; and then proceeds to examine the structure and dynamics of the atmosphere, from the synoptic scale through to the microscale, including the interaction of living things with their environment. It covers a range of topics from the laboratory to the field, including the analysis of thermodynamic diagrams and dispersion of pollutants, simple micrometeorological experiments on a sports field, as well as a detailed study on the measurement of carbon dioxide exchange between the atmosphere and tropical rainforests.Straightforward, simple models and short arguments are used wherever possible to promote physical understanding, for example, in the discussion of the greenhouse effect. The aim is to bring the reader to the point where he or she is able to understand and analyze weather charts in daily use around the world; obtain an appreciation of current experimental techniques; and also make informed, quantitative estimates in relation to current issues surrounding the current debate on climate change.




Principles of Environmental Physics


Book Description

Thoroughly revised and up-dated edition of a highly successful textbook.




Physical Principles of Meteorology and Environmental Physics


Book Description

This book starts with the big picture, relating Einstein's famous mass-energy formula E = mc2 to the global climate; and then proceeds to examine the structure and dynamics of the atmosphere, from the synoptic scale through to the microscale, including the interaction of living things with their environment. It covers a range of topics from the laboratory to the field, including the analysis of thermodynamic diagrams and dispersion of pollutants, simple micrometeorological experiments on a sports field, as well as a detailed study on the measurement of carbon dioxide exchange between the atmosphere and tropical rainforests.Straightforward, simple models and short arguments are used wherever possible to promote physical understanding, for example, in the discussion of the greenhouse effect. The aim is to bring the reader to the point where he or she is able to understand and analyze weather charts in daily use around the world; obtain an appreciation of current experimental techniques; and also make informed, quantitative estimates in relation to current issues surrounding the current debate on climate change.




Fundamental Principles of Environmental Physics


Book Description

This book is an interdisciplinary and accessible guide to environmental physics. It allows readers to gain a more complete understanding of physical process and their interaction with ecological ones underpin important environmental issues. The book covers a wide range of topics within environmental physics, including: • natural and anthropogenic canopies, including forests, urban or wavy terrains;• the fundamentals of heat transfer;• atmospheric flow dynamics;• global carbon budget;• climate change; and• the relevance of biochar as a global carbon sink. Including solved exercises, numerous illustrations and tables, as well as an entire chapter focused on applications, book is of interest to researchers, students and industrial engineers alike.




Principles of Atmospheric Science


Book Description

Providing a comprehensive introduction to atmospheric science, the author identifies the fundamental concepts and principles related to atmospheric science.




An Introduction to Atmospheric Physics


Book Description

Contributor biographical information for An introduction to atmospheric physics / David G. Andrews. Bibliographic record and links to related information available from the Library of Congress catalog Biographical text provided by the publisher (may be incomplete or contain other coding). The Library of Congress makes no claims as to the accuracy of the information provided, and will not maintain or otherwise edit/update the information supplied by the publisher. -- -- David Andrews has been a lecturer in Physics at Oxford University and a Physics tutor at Lady Margaret Hall, Oxford, for 20 years. During this time he has had extensive experience of teaching a wide range of physics courses, including atmospheric physics. This experience has included giving lectures to large student audiences and also giving tutorials to small groups. Tutorials, in particular, have given him insights into the kinds of problems that physics students encounter when learning atmospheric physics, and the kinds of topics that excite them. His broad teaching experience has also helped him introduce students to connections between topics in atmospheric physics and related topics in other areas of physics. He feels that it is particularly important to expose today's physics students to the excitements and challenges presented by the atmosphere and climate. He has also published a graduate textbook, Middle Atmosphere Dynamics, with J.R. Holton and C.B. Leovy (1987, Academic Press). He is a Fellow of the Royal Meteorological Society, a Member of the Institute of Physics, and a Member of the American Meteorological Society.




Global Physical Climatology


Book Description

Global Physical Climatology is an introductory text devoted to the fundamental physical principles and problems of climate sensitivity and change. Addressing some of the most critical issues in climatology, this text features incisive coverage of topics that are central to understanding orbital parameter theory for past climate changes, and for anthropogenic and natural causes of near-future changes--Key Features* Covers the physics of climate change* Examines the nature of the current climate and its previous changes* Explores the sensitivity of climate and the mechanisms by which humans are likely to produce near-future climate changes* Provides instructive end-of-chapter exercises and appendices




Physics of the Atmosphere and Climate


Book Description

Murry Salby's new book provides an integrated treatment of the processes controlling the Earth-atmosphere system, developed from first principles through a balance of theory and applications. This book builds on Salby's previous book, Fundamentals of Atmospheric Physics. The scope has been expanded into climate, with the presentation streamlined for undergraduates in science, mathematics and engineering. Advanced material, suitable for graduate students and as a resource for researchers, has been retained but distinguished from the basic development. The book provides a conceptual yet quantitative understanding of the controlling influences, integrated through theory and major applications. It leads readers through a methodical development of the diverse physical processes that shape weather, global energetics and climate. End-of-chapter problems of varying difficulty develop student knowledge and its quantitative application, supported by answers and detailed solutions online for instructors.




The Atmospheric Sciences


Book Description

Technology has propelled the atmospheric sciences from a fledgling discipline to a global enterprise. Findings in this field shape a broad spectrum of decisions--what to wear outdoors, whether aircraft should fly, how to deal with the issue of climate change, and more. This book presents a comprehensive assessment of the atmospheric sciences and offers a vision for the future and a range of recommendations for federal authorities, the scientific community, and education administrators. How does atmospheric science contribute to national well-being? In the context of this question, the panel identifies imperatives in scientific observation, recommends directions for modeling and forecasting research, and examines management issues, including the growing problem of weather data availability. Five subdisciplines--physics, chemistry, dynamics and weather forecasting, upper atmosphere and near-earth space physics, climate and climate change--and their status as the science enters the twenty-first century are examined in detail, including recommendations for research. This readable book will be of interest to public-sector policy framers and private-sector decisionmakers as well as researchers, educators, and students in the atmospheric sciences.




Fundamentals of Atmospheric Physics


Book Description

Fundamentals of Atmospheric Physics emphasizes the interrelationships of physical and dynamical meteorology. The text unifies four major subject areas: atmospheric thermodynamics, hydrostatic equilibrium and stability, atmospheric radiation and clouds, and atmospheric dynamics. These fundamental areas serve as cornerstones of modern atmospheric research on environmental issues like global change and ozone depletion. Physical concepts underlying these subject areas are developed from first principles, providing a self-contained text for students and scholars from diverse backgrounds. The presentation is Lagrangian (single-body problems) in perspective, with a balance of theory and application. Each chapter includes detailed and extensive problems; selected answers are provided, as are appendices of various constants. The text requires a thorough foundation in calculus. - Presents a comprehensive introduction to atmospheric thermodynamics, hydrostatics, radiation and clouds, and dynamics - Develops concepts from first principles, providing a self-contained volume for readers from diverse backgrounds - Emphasizes the interaction of physical processes shaping global problems of atmospheric energetics, transport, and chemistry - Provides a balance of theory and applications, with examples drawn from a wide range of phenomena figuring in global atmospheric research - Extensively illustrated with global satellite imagery and analyses and photographs of laboratory simulations - Exercises apply to a wide range of topical problems