Physical Reality and Mathematical Description


Book Description

This collection of essays is intended as a tribute to Josef Maria Jauch on his sixtieth birthd~. Through his scientific work Jauch has justly earned an honored name in the community of theo retical physicists. Through his teaching and a long line of dis tinguished collaborators he has put an imprint on modern mathema tical physics. A number of Jauch's scientific collaborators, friends and admirers have contributed to this collection, and these essays reflect to some extent Jauch's own wide interests in the vast do main of theoretical physics. Josef Maria Jauch was born on 20 September 1914, the son of Josef Alois and Emma (nee Conti) Jauch, in Lucerne, Switzerland. Love of science was aroused in him early in his youth. At the age of twelve he came upon a popular book on astronomy, and an exam ple treated in this book mystified him. It was stated that if a planet travels around a centre of Newtonian attraction with a pe riod T, and if that planet were stopped and left to fall into the centre from any point of the circular orbit, it would arrive at the centre in the time T/I32. Young Josef puzzled about this for several months until he made his first scientific discovery : that this result could be derived from Kepler's third law in a quite elementary way.




Our Mathematical Universe


Book Description

Max Tegmark leads us on an astonishing journey through past, present and future, and through the physics, astronomy and mathematics that are the foundation of his work, most particularly his hypothesis that our physical reality is a mathematical structure and his theory of the ultimate multiverse. In a dazzling combination of both popular and groundbreaking science, he not only helps us grasp his often mind-boggling theories, but he also shares with us some of the often surprising triumphs and disappointments that have shaped his life as a scientist. Fascinating from first to last—this is a book that has already prompted the attention and admiration of some of the most prominent scientists and mathematicians.




Physical Reality and Common Sense


Book Description

The conventional interpretation of modern physics is difficult to comprehend because it is not consistent with our sense based paradigm for physical reality (i.e., common sense). For example, the conventional interpretation of special relativity assumes time travel to the past is possible, while it is obviously not possible according to our common sense paradigm. In Physical Reality and Common Sense, John Bell's preferred frame interpretation of special relativity and quantum mechanics, supported by the now known structure of the universe, is used to construct an entirely new description of physical reality that will change the very foundations of modern physics.




Conversations on Mind, Matter, and Mathematics


Book Description

Do numbers and the other objects of mathematics enjoy a timeless existence independent of human minds, or are they the products of cerebral invention? Do we discover them, as Plato supposed and many others have believed since, or do we construct them? Does mathematics constitute a universal language that in principle would permit human beings to communicate with extraterrestrial civilizations elsewhere in the universe, or is it merely an earthly language that owes its accidental existence to the peculiar evolution of neuronal networks in our brains? Does the physical world actually obey mathematical laws, or does it seem to conform to them simply because physicists have increasingly been able to make mathematical sense of it? Jean-Pierre Changeux, an internationally renowned neurobiologist, and Alain Connes, one of the most eminent living mathematicians, find themselves deeply divided by these questions. The problematic status of mathematical objects leads Changeux and Connes to the organization and function of the brain, the ways in which its embryonic and post-natal development influences the unfolding of mathematical reasoning and other kinds of thinking, and whether human intelligence can be simulated, modeled,--or actually reproduced-- by mechanical means. The two men go on to pose ethical questions, inquiring into the natural foundations of morality and the possibility that it may have a neural basis underlying its social manifestations. This vivid record of profound disagreement and, at the same time, sincere search for mutual understanding, follows in the tradition of Poincaré, Hadamard, and von Neumann in probing the limits of human experience and intellectual possibility. Why order should exist in the world at all, and why it should be comprehensible to human beings, is the question that lies at the heart of these remarkable dialogues.




The Mathematical Reality


Book Description

Alexander Unzicker is a theoretical physicist and writes about elementary questions of natural philosophy. His critique of contemporary physics Bankrupting Physics (Macmillan) received the 'Science Book of the Year' award (German edition 2010). With The Mathematical Reality, Unzicker presents his most fundamental work to date, which is the result of years of study of natural laws and their historical development.The discovery of fundamental laws of nature has influenced the fate of Homo sapiens more than anything else. Has modern physics already understood these laws? Many puzzles formulated by Albert Einstein or Paul Dirac are still unsolved today, in particular the meaning of fundamental constants. In this book, Unzicker contends that a rational description of nature must do without any constants.A methodological and historical analysis shows, however, that the underlying problem of physics is deep, unexpected and fatal: the concepts of space and time themselves, the basis of science since Newton, could be fundamentally inappropriate for the description of reality, although-or precisely because-they are so easily accessible to human perception.A new understanding of reality can only arise from mathematics. By exploring the three-dimensional unitary sphere, which could replace the concepts of space and time, the author presents a mathematical vision that points the way to a new understanding of reality.




The Mathematical Representation of Physical Reality


Book Description

​This book deals with the rise of mathematics in physical sciences, beginning with Galileo and Newton and extending to the present day. The book is divided into two parts. The first part gives a brief history of how mathematics was introduced into physics—despite its "unreasonable effectiveness" as famously pointed out by a distinguished physicist—and the criticisms it received from earlier thinkers. The second part takes a more philosophical approach and is intended to shed some light on that mysterious effectiveness. For this purpose, the author reviews the debate between classical philosophers on the existence of innate ideas that allow us to understand the world and also the philosophically based arguments for and against the use of mathematics in physical sciences. In this context, Schopenhauer’s conceptions of causality and matter are very pertinent, and their validity is revisited in light of modern physics. The final question addressed is whether the effectiveness of mathematics can be explained by its “existence” in an independent platonic realm, as Gödel believed. The book aims at readers interested in the history and philosophy of physics. It is accessible to those with only a very basic (not professional) knowledge of physics.




Classical and Quantum Information


Book Description

A new discipline, Quantum Information Science, has emerged in the last two decades of the twentieth century at the intersection of Physics, Mathematics, and Computer Science. Quantum Information Processing is an application of Quantum Information Science which covers the transformation, storage, and transmission of quantum information; it represents a revolutionary approach to information processing. Classical and Quantum Information covers topics in quantum computing, quantum information theory, and quantum error correction, three important areas of quantum information processing. Quantum information theory and quantum error correction build on the scope, concepts, methodology, and techniques developed in the context of their close relatives, classical information theory and classical error correcting codes. - Presents recent results in quantum computing, quantum information theory, and quantum error correcting codes - Covers both classical and quantum information theory and error correcting codes - The last chapter of the book covers physical implementation of quantum information processing devices - Covers the mathematical formalism and the concepts in Quantum Mechanics critical for understanding the properties and the transformations of quantum information




Mathematical Analysis of Physical Problems


Book Description

This mathematical reference for theoretical physics employs common techniques and concepts to link classical and modern physics. It provides the necessary mathematics to solve most of the problems. Topics include the vibrating string, linear vector spaces, the potential equation, problems of diffusion and attenuation, probability and stochastic processes, and much more.




Reality Is Not What It Seems


Book Description

From the best-selling author of Seven Brief Lessons on Physics comes a new book about the mind-bending nature of the universe What are time and space made of? Where does matter come from? And what exactly is reality? Scientist Carlo Rovelli has spent his life exploring these questions and pushing the boundaries of what we know. Here he explains how our image of the world has changed throughout centuries. From Aristotle to Albert Einstein, Michael Faraday to the Higgs boson, he takes us on a wondrous journey to show us that beyond our ever-changing idea of reality is a whole new world that has yet to be discovered.




Mathematics and Reality


Book Description

Mary Leng offers a defense of mathematical fictionalism, according to which we have no reason to believe that there are any mathematical objects. Perhaps the most pressing challenge to mathematical fictionalism is the indispensability argument for the truth of our mathematical theories (and therefore for the existence of the mathematical objects posited by those theories). According to this argument, if we have reason to believe anything, we have reason to believe that the claims of our best empirical theories are (at least approximately) true. But since claims whose truth would require the existence of mathematical objects are indispensable in formulating our best empirical theories, it follows that we have good reason to believe in the mathematical objects posited by those mathematical theories used in empirical science, and therefore to believe that the mathematical theories utilized in empirical science are true. Previous responses to the indispensability argument have focussed on arguing that mathematical assumptions can be dispensed with in formulating our empirical theories. Leng, by contrast, offers an account of the role of mathematics in empirical science according to which the successful use of mathematics in formulating our empirical theories need not rely on the truth of the mathematics utilized.