Biodiesel


Book Description

This book focuses on the development of biodiesel systems from the production of feedstocks and their processing technologies to the comprehensive applications of both by-products and biodiesel. It should be of interest for students, researchers, scientists and technologists.




Advanced Combustion Techniques and Engine Technologies for the Automotive Sector


Book Description

This book discusses the recent advances in combustion strategies and engine technologies, with specific reference to the automotive sector. Chapters discuss the advanced combustion technologies, such as gasoline direct ignition (GDI), spark assisted compression ignition (SACI), gasoline compression ignition (GCI), etc., which are the future of the automotive sector. Emphasis is given to technologies which have the potential for utilization of alternative fuels as well as emission reduction. One special section includes a few chapters for methanol utilization in two-wheelers and four wheelers. The book will serve as a valuable resource for academic researchers and professional automotive engineers alike.




Analysis of Particulate Matter Emission in Diesel Engine Operated with Waste Cooking Oil Biodiesel


Book Description

Diesel engines which is an attractive power unit used widely in many fields are among the main contributors to air pollutions for the large amount of emissions, especially particulate matter (PM) and nitrogen oxides (NOx). PM is one of the major pollutants emitted by diesel engine which have adverse effects on human health. Accordingly, many research have been done to find alternative fuels that are clean and efficient. In this study, waste cooking oil (WCO) biodiesel has been used as an alternative source for diesel engine which produces lower PM than diesel fuel. The emission of PM and gaseous emission (carbon monoxide (CO), carbon dioxide (CO2), nitric oxide (NO) and NOx) has been collected from single cylinder diesel engine fuelled with diesel and WCO biodiesel blends (B5, B10 B20 and B100) at five different engine speed (1200 rpm, 1500 rpm, 1800 rpm, 2100 rpm and 2400 rpm) with constant load of 20 Nm. The comparison between diesel and WCO biodiesel blends has been made in terms of PM characterization which is PM mass concentration, its component ( soluble organic fraction (SOF) and soot) and its influence on PM formation, PM morphology and PM size distribution. In addition, combustion characteristic which is in-cylinder pressure of the engine as well as exhaust temperature also has been observed. The results show PM emission of B100 is lower than diesel fuel with variation of 5.56% to 21.82 % . This is due to oxygen content contained in B100. As for SOF concentration, blended fuels B10, B20, and B100 have higher SOF value (3.23 % to 82.36 % ) compared to diesel fuel at moderate and high engine speed. Meanwhile, soot concentration for blended fuels B10, B20 and B100 is lower (10 % to 62.50 %. ) compared to diesel fuel Observation on PM morphology shows that the images is chain-like agglomeration which is extremely small non uniform nanostructure. As for the PM size distribution, the trend were similar for diesel and WCO biodiesel blends. The size distribution of diesel fuel and WCO biodiesel blends were shifted to the larger size as the engine speed is increase d. Simultaneously, the size distribution is shifted to the smaller PM diameter as blending ratio of WCO biodiesel in the fuel blend is increase. The observation of in-cylinder pressure shows uncertain trend with the WCO biodiesel ratio in the fuel blend while decreasing with the increasing engine speed due to the prolong ignition delay period. At the same time, WCO biodiesel blends gives higher value of exhaust temperature which is 1.49 % compared to diesel fuel and it increases as the engine speed increase. In terms of gaseous emission, increasing engine speed increased the CO, CO2, NOx and NO emission while decrease the O2emission. The effect of WCO biodiesel blends on the gaseous emission shows uncertain trend while PM-NOx trade off observation showsB100 simultaneously decrease both NOx and PM emission at the same time. This study shows that the PM and gaseous emission as well as combustion characteristic of the WCO biodiesel are comparable with diesel fuel thus WCO biodiesel has potential as an alternative fuel to be used in diesel in the future.




Biodiesel Properties and Characterization of Particulate Matter Emissions from TARTA Buses Fueled by B20 Biodiesel


Book Description

Physical properties (cloud point, kinematic viscosity, and flash point) of biodiesel blends of commercial biodiesel fuels were measured. Four different biodiesel blends (10, 20, 50, 100 %) based on three feedstocks (tallow oil, soybean, and waste cooking oil) were tested, and the results were compared with ultra-low-sulfur diesel (ULSD). All the tests were conducted according to the American Society for Testing and Materials (ASTM) standard methods. The test results were evaluated statistically. The tested properties showed strong dependence on blends, which means that the percentage of biodiesel in a biodiesel/ULSD mixture is an important factor that determines the biodiesel properties. It was also found that the type of feedstock is a controlling factor in the biodiesel properties. Contents of saturated fatty acids and triglycerides at higher percentages are thought to be the main determinant of the degree of the dependence, and also the cause of undesired variations in the cold flow properties, kinematic viscosity and flash point. These variations may be controlled through modifications in the transesterification process or by using additives, which is necessary for better engine performance with biodiesel blends. Particulate matter (PM) emissions from mobile sources are the major contributors of urban atmospheric particulate matter especially PM2.5. Particulate matter released from diesel engines contains various organic and inorganic compounds. It is necessary to measure the PM size distribution shape, elemental and organic carbon etc., released from vehicles in order to quantify the source contribution and understand the possible health impacts. Previous studies stated PM2.5 and PM10 to be highly toxic and roots for respiratory illnesses such as asthma and chronic bronchitis, lung inflammation and also increases cardiovascular related risk factors. Biodiesel is one of alternative fuels that are being increasingly used to reduce the release of PM emissions from mobile sources. The current literature shows that the release of PM from transit buses decreases by increasing the biodiesel blend percentage with regular diesel. In this study, the experiments were conducted on the Toledo Area Regional Transit Authority (TARTA) buses 701 and 802, which run on B20 soybean biodiesel (20 vol% biodiesel + 80 vol% ultra-low sulfur diesel). PM emissions were collected on quartz filter papers and were further analyzed for PM characterization. A new approach of measuring particulate matter has been developed based on the dynamic light scattering and electric double layer of PM particles using a NICOMP 380 ZLS Zeta potential particle size analyzer and sonication process to suspend the PM into a liquid. Regardless of the bus number, average mean diameter was more for emissions from hot idling than cold. Also, 701 has PM of larger diameter than 802 in both idling modes. Tests results were also analyzed for Elemental Carbon (EC) and Organic Carbon (OC). Elemental carbon was formed from fuel rich engine locations at high combustion temperatures, whereas organic carbon was formed from primary fuel combustion and atmospheric chemical reactions at low vapor pressure. EC concentration has reduced to nearly 10% of TC from 701 to 802 during idle modes, whereas in the same situation OC concentration has increase to 89%. Hot idling has been the main source for EC emissions, and to control EC and PM emissions hot idling must be avoided. From all these finding in this study biodiesel fuel with NOx emission controlling equipment's are better than the conventional diesel fuels and are suitable for the diesel engines. This will help in improving the sustainability of the fuel and also moderate the emissions.




Health Effects of Transport-related Air Pollution


Book Description

Diseases related to the air pollution caused by road transport affect tens of thousands of people in the WHO Europe region each year. This publication considers the policy challenges involved in the need to reduce the related risks to public health and the environment, whilst meeting socio-economic requirements for effective transport systems. It sets out a systematic review of the literature and a comprehensive evaluation of the health hazards of transport-related air pollution, including factors determining emissions, the contribution of traffic to pollution levels, human exposure and the results of epidemiological and toxicological studies to identify and measure the health effects, and suggestions for policy actions and further research.




Biodiesel


Book Description

For anyone who is trying to keep up with the extremely rapid developments in the biodiesel industry, the second edition of Biodiesel: Growing a New Energy Economy is an invaluable aid. The breathtaking speed with which biodiesel has gained acceptance in the marketplace in the past few years has been exceeded only by the proliferation of biodiesel production facilities around the United States--and the world--only to confront new social and environmental challenges and criticisms. The international survey of the biodiesel industry has been expanded from 40 to more than 80 countries, reflecting the spectacular growth of the industry around the world. This section also tracks the dramatic shifts in the fortunes of the industry that have taken place in some of these nations. The detailed chapters that cover the industry in the United States have also been substantially rewritten to keep abreast of its many new developments and explosive domestic growth. An expanded section on small-scale, local biodiesel production has been added to better represent this small but growing part of the industry. Another new section has been added to more fully explore the increasingly controversial issues of deforestation and food versus fuel, as well as GMO crops. The second edition concludes with updated views on where the industry is headed in the years to come from some of its key players.




The Effects of Oxidized Biodiesel Fuel on Fatty Acid Methyl Ester Composition and Particulate Matter Emissions From a Light-Duty Diesel Engine


Book Description

Diesel particulate matter (PM) is classified by the EPA as carcinogenic, with the transportation sector largely responsible these emissions within the United States. Biodiesel (B100) is derived from renewable sources, providing similar chemical composition to diesel fuel and is in the current diesel supply up to 5% across the nation. However, biodiesel has an inherent oxidation issue due to the unique mixture of fatty acid methyl ester (FAME) molecules present in the biodiesel that are not in diesel. Biodiesel oxidation can only be delayed, and the inevitable process results in changes to the original fuel composition that may alter emissions profiles. There have been limited studies on the effect of oxidized biodiesel fuel on PM emissions, and with increasing biodiesel production volumes, it is important to assess due to possible adverse human health effects. In this study, it was hypothesized that the change in fuel composition due to oxidation would lead to lower PM emissions because the presence of more fuel oxygen molecules and secondary oxidation products would enhance self-combustion characteristics. In this study, PM mass generated from a light-duty diesel engine running on three different fuel types--pure ("neat") B100 biodiesel, pure B0 diesel, and B20 (20% v/v biodiesel blend with diesel)--was quantified and compared to the PM mass (and concentrations) from repeated emissions testing using artificially oxidized B100 and B20 biodiesel as the fuel source. B100 fuel was heated at 110oC for 5, 10, and 20 hours ("oxidation states" 3, 2, and 1, respectively), verifying the extent of fuel oxidation by building an apparatus (Biodiesel Oxidation Stability Surveyor, BOSS) that quantified the biodiesel fuel's oxidative stability using a method equivalent to standard methods for determining the biofuel's induction period. Induction period increased linearly with time spent under the artificial oxidation conditions. A custom, load-based steady-state modal drive cycle was specially developed for emissions testing each neat and oxidized B100 and B20 fuel type in a light-duty diesel engine dynamometer. Observed changes in PM mass with increased fuel oxidation time occurred only for B20 fuel with a 51 ±13% decrease. Fuel properties such as cetane number, biodiesel content, density, and total aromatics were compared between neat and oxidized B20 and B100 samples. Cetane number increased 7% from 66.8 to 71.7 from B100 neat to B100 OX1 (20hrs) and density increased from 0.709g/cm3 to 0.723g/cm3. Chemical analysis of the biodiesel fuels by gas chromatography mass spectrometry (GCMS) quantified individual FAME compounds to determine key species involved in fuel oxidation. B100 FAME concentration widely varied, however, the B20 fuel blend showed that 20 hour artificial oxidation treatment decreased concentrations of the unsaturated FAMEs for C18:3n3, C18:2 cis-9,12, C18:1 (both cis- and trans- isomers) by 41.7 ±3.5%, 33.25 ±8.8%, and 21.9 ±6.9% relative to their initial concentration in the unoxidized fuel, respectively, in general agreement with literature values. The findings of this study help contribute a better understanding of oxidation effects on biodiesel fuel and link together fuel properties, chemical composition, and particulate emissions whereas most literature excludes detailed analysis of biodiesel fuel composition and associated emissions effects.




Fuel Systems for IC Engines


Book Description

This book presents the papers from the latest conference in this successful series on fuel injection systems for internal combustion engines. It is vital for the automotive industry to continue to meet the demands of the modern environmental agenda. In order to excel, manufacturers must research and develop fuel systems that guarantee the best engine performance, ensuring minimal emissions and maximum profit. The papers from this unique conference focus on the latest technology for state-of-the-art system design, characterisation, measurement, and modelling, addressing all technological aspects of diesel and gasoline fuel injection systems. Topics range from fundamental fuel spray theory, component design, to effects on engine performance, fuel economy and emissions. - Presents the papers from the IMechE conference on fuel injection systems for internal combustion engines - Papers focus on the latest technology for state-of-the-art system design, characterisation, measurement and modelling; addressing all technological aspects of diesel and gasoline fuel injection systems - Topics range from fundamental fuel spray theory and component design to effects on engine performance, fuel economy and emissions