Food and Agricultural Wastewater Utilization and Treatment


Book Description

Food and Agricultural Wastewater Utilization and Treatment focuses on the cost-effective treatment technologies specific for food and agriculture wastewater and possible economical recovery of valuable substances from wastewater during common food processing and postharvest operations using innovative technologies. The technologies included in the book are not a mere collection of all known relevant technologies. Instead, priority consideration is given to those technologies that can not only solve the environmental problem of wastewater disposal but also reduce the wastewater management cost in the long run for food and agriculture industries. The book combines past decades of research on food and agricultural wastewater issues with an abundance of emerging research on innovative separation technologies to separate biological molecules from complex biological systems. Food technologists as well as environmental and agricultural engineers/scientists will find Food and Agricultural Wastewater Utilization and Treatment invaluable in their quest of improving food and agricultural wastewater management.







Physicochemical Processes


Book Description

This book is a comprehensive treatise on the principles and applications of chemical and physical-chemical methods of water and wastewater treatment.




Integrated and Hybrid Process Technology for Water and Wastewater Treatment


Book Description

Tackling the issue of water and wastewater treatment nowadays requires novel approaches to ensure that sustainable development can be achieved. Water and wastewater treatment should not be seen only as an end-of-pipe solution but instead the approach should be more holistic and lead to a more sustainable process. This requires the integration of various methods/processes to obtain the most optimized design. Integrated and Hybrid Process Technology for Water and Wastewater Treatment discusses the state-of-the-art development in integrated and hybrid treatment processes and their applications to the treatment of a vast variety of water and wastewater sources. The approaches taken in this book are categorized as (i) resources recovery and consumption, (ii) optimal performance, (iii) physical and environmental footprints, (iv) zero liquid discharge concept and are (v) regulation-driven. Through these categories, readers will see how such an approach could benefit the water and wastewater industry. Each chapter discusses challenges and prospects of an integrated treatment process in achieving sustainable development. This book serves as a platform to provide ideas and to bridge the gap between laboratory-scale research and practical industry application. - Includes comprehensive coverage on integrated and hybrid technology for water and wastewater treatment - Takes a new approach in looking at how water and wastewater treatment contributes to sustainable development - Provides future direction of research in sustainable water and wastewater treatment




Industrial Water Treatment Process Technology


Book Description

Industrial Water Treatment Process Technology begins with a brief overview of the challenges in water resource management, covering issues of plenty and scarcity-spatial variation, as well as water quality standards. In this book, the author includes a clear and rigorous exposition of the various water resource management approaches such as: separation and purification (end of discharge pipe), zero discharge approach (green process development), flow management approach, and preservation and control approach. This coverage is followed by deeper discussion of individual technologies and their applications. - Covers water treatment approaches including: separation and purification—end of discharge pipe; zero discharge approach; flow management approach; and preservation and control approach - Discusses water treatment process selection, trouble shooting, design, operation, and physico-chemical and treatment - Discusses industry-specific water treatment processes




Advanced Physicochemical Treatment Processes


Book Description

The past thirty years have witnessed a growing worldwide desire that po- tive actions be taken to restore and protect the environment from the degr- ing effects of all forms of pollution—air, water, soil, and noise. Because pollution is a direct or indirect consequence of waste, the seemingly idealistic demand for “zero discharge” can be construed as an unrealistic demand for zero waste. However, as long as waste continues to exist, we can only attempt to abate the subsequent pollution by converting it to a less noxious form. Three major questions usually arise when a particular type of pollution has been id- tified: (1) How serious is the pollution? (2) Is the technology to abate it ava- able? and (3) Do the costs of abatement justify the degree of abatement achieved? This book is one of the volumes of the Handbook of Environmental Engineering series. The principal intention of this series is to help readers f- mulate answers to the last two questions above. The traditional approach of applying tried-and-true solutions to specific pollution problems has been a major contributing factor to the success of en- ronmental engineering, and has accounted in large measure for the establi- ment of a “methodology of pollution control. ” However, the realization of the ever-increasing complexity and interrelated nature of current environmental problems renders it imperative that intelligent planning of pollution abatement systems be undertaken.




Treatment of Micropollutants in Water and Wastewater


Book Description

Over the last few years there has been a growing concern over the increasing concentration of micropollutants originating from a great variety of sources including pharmaceutical, chemical engineering and personal care product industries in rivers, lakes, soil and groundwater. As most of the micropollutants are polar and persistent compounds, they are only partially or not at all removed from wastewater and thus can enter the environment posing a great risk to the biota. It is hypothesized that wastewater is one of the most important point sources for micropollutants. Treatment of Micropollutants in Water and Wastewater gives a comprehensive overview of modern analytical methods and will summarize novel single and hybrid methods to remove continuously emerging contaminants - micropollutants from the aqueous phase. New trends (e.g. sensor technology, nanotechnology and hybrid treatment technologies) are described in detail. The book is very timely because the new techniques are still in the development phase and have to be realized not only in the laboratory but also on a larger scale. The content of the book is divided into chapters that present current descriptive and analytical methods that are available to detect and measure micropollutants together with detailed information on various chemical, biological and physicochemical methods that have evolved over the last few decades. Treatment of Micropollutants in Water and Wastewater will also enable readers to make well informed choices through providing an understanding of why and how micropollutants must be removed from water sources, and what are the most appropriate and available techniques for providing a cost and technologically effective and sustainable solutions for reaching the goal of micropollutant-free water and wastewater. The book will be suitable for water and wastewater professionals as well for students and researchers in civil engineering, environmental engineering and process engineering fields.




Water Purification and Management


Book Description

One of the major challenges for many Mediterranean and other countries is finding viable solutions to tackle water shortage. Some of the major water quality constraints derive from the high salinity of groundwater and from pollution sources such as: untreated domestic sewage, fertilizers and pesticides from irrigation drainage, industrial effluents, and solid waste disposal. Wastewater treatment processes involving physico-chemical and biological treatment, chemical oxidation, membrane technologies, along with methods of solids concentration and disposal are of special relevance in dealing with these problems. This volume contains selected lectures presented at the NATO ADVANCED TRAINING COURSE held in Oviedo (November 15-21, 2009) and sponsored by the NATO Science for Peace and Security (SPS) Programme. They cover a variety of topics from wastewater treatment methods to cleaner production strategies, as a careful management of water resources is the basis for sustainable development and to avoid potential security threats. The reader will benefit from a general view of some of the operations involved in wastewater treatment and solid concentration and disposal methods. A proper water reuse and recycling, together with efficient solid disposal, would contribute to a better use of the resources and a sustainable economic growth, particularly in many arid lands of the world.




Physical and Chemical Separation in Water and Wastewater Treatment


Book Description

Based upon half a century of research by the authors, Physical and Chemical Separation in Water and Wastewater Treatment addresses the whole water cycle spectrum, from global hydrological cycle, urban-regional metabolic cycle to individual living and production cycle, with respect to quality control technology based on fundamental science and theories. For every treatment process, basic scientific and environmental physical and chemical natures are explained with respect to those of water and its impurities. Health danger and risks for human beings are also covered. The authors define water qualities on a “Water Quality Matrix” composed of 35 elements. The vertical axis (row), has individual 7digit impurity size from 10-10m (water molecule 3?) to 10-3m (0.1mm sand grains) and in the horizontal axis(column) there are 5 categories of surrogate chemical and biochemical quality indices. The same 35 element matrix is used to correspond with several typical water quality treatments, unit-operation/unit-process, with a suitable characteristic grouping of the elements. The authors then present “the Water Quality Conversion Matrix” or “Water Quality Treatment Matrix”. With respect to typical treatment processes, the basic concept and scientific background are explained and the background of the technologies is clarified. Mechanisms of the process are explained and a kinetic process is formulated. The kinetics are experimentally verified quantitatively with important equilibrium and rate constants. Based on the authors’ research, various new treatment technologies are proposed with high efficiency, high capacity and less energy, and with steady operation ability. This comprehensive reference book is intended for undergraduate and graduate students, and also serves as a guide book for practical engineers and industry and university researchers.




Physicochemical Methods for Water and Wastewater Treatment


Book Description

Physicochemical Methods for Water and Wastewater Treatment covers the proceedings of the Second International Conference held in Lublin in June 1979. The papers in this compendium discuss scientific findings on how to treat water and wastewater using various physicochemical methods, such as chemical coagulation, filtration, ion exchange, and activated-carbon adsorption. This compendium will be very beneficial to chemists and professional water and wastewater technologists, as well as to those in government, private industries, or educational institutions and are interested in water and wastewater treatment.