Physics and Theoretical Computer Science


Book Description

Aims to reinforce the interface between physical sciences, theoretical computer science, and discrete mathematics. This book assembles theoretical physicists and specialists of theoretical informatics and discrete mathematics in order to learn about developments in cryptography, algorithmics, and more.







Computer Meets Theoretical Physics


Book Description

This book provides a vivid account of the early history of molecular simulation, a new frontier for our understanding of matter that was opened when the demands of theoretical physicists were met by the availability of the modern computers. Since their inception, electronic computers have enormously increased their performance, thus making possible the unprecedented technological revolution that characterizes our present times. This obvious technological advancement has brought with it a silent scientific revolution in the practice of theoretical physics. In particular, in the physics of matter it has opened up a direct route from the microscopic physical laws to observable phenomena. One can now study the time evolution of systems composed of millions of molecules, and simulate the behaviour of macroscopic materials and actually predict their properties. Molecular simulation has provided a new theoretical and conceptual tool that physicists could only dream of when the foundations of statistical mechanics were laid. Molecular simulation has undergone impressive development, both in the size of the scientific community involved and in the range and scope of its applications. It has become the ubiquitous workhorse for investigating the nature of complex condensed matter systems in physics, chemistry, materials and the life sciences. Yet these developments remain largely unknown outside the inner circles of practitioners, and they have so far never been described for a wider public. The main objective of this book is therefore to offer a reasonably comprehensive reconstruction of the early history of molecular simulation addressed to an audience of both scientists and interested non-scientists, describing the scientific and personal trajectories of the main protagonists and discussing the deep conceptual innovations that their work produced.




Quantum Circuit Simulation


Book Description

Quantum Circuit Simulation covers the fundamentals of linear algebra and introduces basic concepts of quantum physics needed to understand quantum circuits and algorithms. It requires only basic familiarity with algebra, graph algorithms and computer engineering. After introducing necessary background, the authors describe key simulation techniques that have so far been scattered throughout the research literature in physics, computer science, and computer engineering. Quantum Circuit Simulation also illustrates the development of software for quantum simulation by example of the QuIDDPro package, which is freely available and can be used by students of quantum information as a "quantum calculator."




Handbook of Theoretical Computer Science


Book Description

"Of all the books I have covered in the Forum to date, this set is the most unique and possibly the most useful to the SIGACT community, in support both of teaching and research.... The books can be used by anyone wanting simply to gain an understanding of one of these areas, or by someone desiring to be in research in a topic, or by instructors wishing to find timely information on a subject they are teaching outside their major areas of expertise." -- Rocky Ross, "SIGACT News" "This is a reference which has a place in every computer science library." -- Raymond Lauzzana, "Languages of Design" The Handbook of Theoretical Computer Science provides professionals and students with a comprehensive overview of the main results and developments in this rapidly evolving field. Volume A covers models of computation, complexity theory, data structures, and efficient computation in many recognized subdisciplines of theoretical computer science. Volume B takes up the theory of automata and rewriting systems, the foundations of modern programming languages, and logics for program specification and verification, and presents several studies on the theoretic modeling of advanced information processing. The two volumes contain thirty-seven chapters, with extensive chapter references and individual tables of contents for each chapter. There are 5,387 entry subject indexes that include notational symbols, and a list of contributors and affiliations in each volume.




Computation, Physics and Beyond


Book Description

This Festschrift volume has been published in honor of Cristian Calude on the occasion of his 60th birthday and contains contributions from invited speakers and regular papers presented at the International Workshop on Theoretical Computer Science, WTCS 2012, held in Auckland, New Zealand, in February 2012. Cristian Calude has made a significant contribution to research in computer science theory. Along with early work by Chaitin, Kučera, Kurtz, Solovay, and Terwijn his papers published in the mid-1990s jointly with Khoussainov, Hertling, and Wang laid the foundation for the development of modern theory of algorithmic randomness. His work was essential for establishing the leading role of New Zealand in this area. The research interests of Cristian Calude are reflected in the topics covered by the 32 papers included in this book, namely: algorithmic information theory, algorithms, automata and formal languages, computing and natural sciences, computability and applications, logic and applications, philosophy of computation, physics and computation, and unconventional models of computation. They have been organized into four parts. The first part consists of papers discussing his life achievements. This is followed by papers in the three general areas of complexity, computability, and randomness; physics, philosophy (and logic), and computation; and algorithms, automata, and formal models (including unconventional computing).




Physics and Theoretical Computer Science


Book Description

Aims to reinforce the interface between physical sciences, theoretical computer science, and discrete mathematics. This book assembles theoretical physicists and specialists of theoretical informatics and discrete mathematics in order to learn about developments in cryptography, algorithmics, and more.




New Topics in Theoretical Computer Science


Book Description

Theoretical computer science focuses on the more abstract, logical and mathematical aspects of computing, such as the theory of computation, analysis of algorithms and semantics of programming languages. This new book presents the latest research in the field from around the globe.




People & Ideas in Theoretical Computer Science


Book Description

Theory and theoreticians have played a major role in computer science. Many insights into the nature of efficient computations were gained and theory was crucial for some of the most celebrated engineering triumphs of computer science (e.g., in compiler design, databases, multitask operating systems, to name just a few). Theoretical computer science (TCS) functions as a communication bridge between computer science and other subjects, notably, mathematics, linguistics, biology; it is a champion in developing unconventional models of computation (DNA, quantum). This book collects personal accounts and reflections of fourteen eminent scientists who have dedicated themselves to the craft of TCS. Contributions focus on authors specific interests, experiences, and reminiscences. The emerging picture, which is just one among other possible ones, should be a catalyst for further developments and continuations. Was most interested to learn about the project, which should be a worthwhile one." N. Chomsky, MIT. "The human story of creativity is inspiring and documents a very noble activity - the creation of knowledge in its most beautiful and useful form - the creation of a science. Supplying the technical and intellectual tools to probe some of the most fascinating questions about the nature of thought and intelligence, theoretical computer science is trying to grasp the limits of rational thought, the limits of knowable. This book will contribute to the understanding of the creation of a magnificent science." J. Hartmanis, NSF. "This is obviously an extremely worthwhile project." D. E. Knuth, Stanford University.




Introduction to Theoretical Computer Science


Book Description

The contents of this book are self-sufficient in the sense that no preliminary knowledge other than elementary set theory is needed and there are no complicated mathematical theorems in the book. A must for those entering the field.