Physics for Students of Science and Engineering


Book Description

Physics for Students of Science and Engineering is a calculus-based textbook of introductory physics. The book reviews standards and nomenclature such as units, vectors, and particle kinetics including rectilinear motion, motion in a plane, relative motion. The text also explains particle dynamics, Newton's three laws, weight, mass, and the application of Newton's laws. The text reviews the principle of conservation of energy, the conservative forces (momentum), the nonconservative forces (friction), and the fundamental quantities of momentum (mass and velocity). The book examines changes in momentum known as impulse, as well as the laws in momentum conservation in relation to explosions, collisions, or other interactions within systems involving more than one particle. The book considers the mechanics of fluids, particularly fluid statics, fluid dynamics, the characteristics of fluid flow, and applications of fluid mechanics. The text also reviews the wave-particle duality, the uncertainty principle, the probabilistic interpretation of microscopic particles (such as electrons), and quantum theory. The book is an ideal source of reference for students and professors of physics, calculus, or related courses in science or engineering.




Physics for Scientists and Engineers


Book Description

As a market leader, PHYSICS FOR SCIENTISTS AND ENGINEERS is one of the most powerful brands in the physics market. While preserving concise language, state-of-the-art educational pedagogy, and top-notch worked examples, the Ninth Edition highlights the Analysis Model approach to problem-solving, including brand-new Analysis Model Tutorials, written by text co-author John Jewett, and available in Enhanced WebAssign. The Analysis Model approach lays out a standard set of situations that appear in most physics problems, and serves as a bridge to help students identify the correct fundamental principle--and then the equation--to utilize in solving that problem. The unified art program and the carefully thought out problem sets also enhance the thoughtful instruction for which Raymond A. Serway and John W. Jewett, Jr. earned their reputations. The Ninth Edition of PHYSICS FOR SCIENTISTS AND ENGINEERS continues to be accompanied by Enhanced WebAssign in the most integrated text-technology offering available today. Important Notice: Media content referenced within the product description or the product text may not be available in the ebook version.




Physics and Music


Book Description

Comprehensive and accessible, this foundational text surveys general principles of sound, musical scales, characteristics of instruments, mechanical and electronic recording devices, and many other topics. More than 300 illustrations plus questions, problems, and projects.




Principles of Physics


Book Description

This textbook presents a basic course in physics to teach mechanics, mechanical properties of matter, thermal properties of matter, elementary thermodynamics, electrodynamics, electricity, magnetism, light and optics and sound. It includes simple mathematical approaches to each physical principle, and all examples and exercises are selected carefully to reinforce each chapter. In addition, answers to all exercises are included that should ultimately help solidify the concepts in the minds of the students and increase their confidence in the subject. Many boxed features are used to separate the examples from the text and to highlight some important physical outcomes and rules. The appendices are chosen in such a way that all basic simple conversion factors, basic rules and formulas, basic rules of differentiation and integration can be viewed quickly, helping student to understand the elementary mathematical steps used for solving the examples and exercises. Instructors teaching form this textbook will be able to gain online access to the solutions manual which provides step-by-step solutions to all exercises contained in the book. The solutions manual also contains many tips, coloured illustrations, and explanations on how the solutions were derived.




University Physics Volume 1 of 3 (1st Edition Textbook)


Book Description

Black & white print. University Physics is a three-volume collection that meets the scope and sequence requirements for two- and three-semester calculus-based physics courses. Volume 1 covers mechanics, sound, oscillations, and waves. Volume 2 covers thermodynamics, electricity, and magnetism. Volume 3 covers optics and modern physics. This textbook emphasizes connections between theory and application, making physics concepts interesting and accessible to students while maintaining the mathematical rigor inherent in the subject. Frequent, strong examples focus on how to approach a problem, how to work with the equations, and how to check and generalize the result.




Principles of Engineering Mechanics


Book Description

Separation of the elements of classical mechanics into kinematics and dynamics is an uncommon tutorial approach, but the author uses it to advantage in this two-volume set. Students gain a mastery of kinematics first – a solid foundation for the later study of the free-body formulation of the dynamics problem. A key objective of these volumes, which present a vector treatment of the principles of mechanics, is to help the student gain confidence in transforming problems into appropriate mathematical language that may be manipulated to give useful physical conclusions or specific numerical results. In the first volume, the elements of vector calculus and the matrix algebra are reviewed in appendices. Unusual mathematical topics, such as singularity functions and some elements of tensor analysis, are introduced within the text. A logical and systematic building of well-known kinematic concepts, theorems, and formulas, illustrated by examples and problems, is presented offering insights into both fundamentals and applications. Problems amplify the material and pave the way for advanced study of topics in mechanical design analysis, advanced kinematics of mechanisms and analytical dynamics, mechanical vibrations and controls, and continuum mechanics of solids and fluids. Volume I of Principles of Engineering Mechanics provides the basis for a stimulating and rewarding one-term course for advanced undergraduate and first-year graduate students specializing in mechanics, engineering science, engineering physics, applied mathematics, materials science, and mechanical, aerospace, and civil engineering. Professionals working in related fields of applied mathematics will find it a practical review and a quick reference for questions involving basic kinematics.




Catalogue


Book Description




Understanding Acoustics


Book Description

This textbook provides a unified approach to acoustics and vibration suitable for use in advanced undergraduate and first-year graduate courses on vibration and fluids. The book includes thorough treatment of vibration of harmonic oscillators, coupled oscillators, isotropic elasticity, and waves in solids including the use of resonance techniques for determination of elastic moduli. Drawing on 35 years of experience teaching introductory graduate acoustics at the Naval Postgraduate School and Penn State, the author presents a hydrodynamic approach to the acoustics of sound in fluids that provides a uniform methodology for analysis of lumped-element systems and wave propagation that can incorporate attenuation mechanisms and complex media. This view provides a consistent and reliable approach that can be extended with confidence to more complex fluids and future applications. Understanding Acoustics opens with a mathematical introduction that includes graphing and statistical uncertainty, followed by five chapters on vibration and elastic waves that provide important results and highlight modern applications while introducing analytical techniques that are revisited in the study of waves in fluids covered in Part II. A unified approach to waves in fluids (i.e., liquids and gases) is based on a mastery of the hydrodynamic equations. Part III demonstrates extensions of this view to nonlinear acoustics. Engaging and practical, this book is a must-read for graduate students in acoustics and vibration as well as active researchers interested in a novel approach to the material.




Fundamentals of Mechanics


Book Description

Fundamentals of Mechanics is Volume 1 of six-volume Calculus-based University Physics series, designed to meet the requirements of a two-semester course sequence of introductory physics for physics, chemistry, and engineering majors. The present volume focuses on building a good foundation in kinematics and dynamics. The emphasis is placed on understanding basic concepts of kinematics and equilibrium conditions of forces well before handling more difficult subject of dynamics. Concepts and ideas are developed starting from fundamental principles whenever possible and illustrated by numerical and symbolic problems. Detailed guided exercises and challenging problems help students develop their problem solving skills. The complete University Physics series (Volumes 1-6) covers topics in Mechanics, Gravitation, Waves, Sound, Fluids, Thermodynamics, Electricity, Magnetism, Optics, and Modern Physics. Appropriate volumes can be selected to provide students a solid foundation of introductory physics and make their transition into advanced courses easier. Volume 1: Fundamentals of Mechanics - Vectors, Kinematics, Newton's Laws of Motion, Impulse, Energy, Rotation, Physics in Non-inertial Frames. Volume 2: Applications of Mechanics - Newton's Law of Gravitation, Simple Harmonic Motion, Mechanical Waves, Sound, Stress and Strain in Materials, Fluid Pressure, Fluid Dynamics. Volume 3: Thermodynamics - Heat, Temperature, Specific Heat, Thermal Expansion, Ideal Gas Law, First Law of Thermodynamics, Work by Gas, Second Law of Thermodynamics, Heat Engine, Carnot Cycle, Entropy, Kinetic Theory, Maxwell's Velocity Distribution. Volume 4: Electricity and Magnetism - Static Electricity, Coulomb's Law, Electric Field, Gauss's Law, Electric Potential, Metals and Dielectrics, Magnets, Magnetic Force, Steady Current, Magnetic Field, Ampere's Law, Kirchhoff's Rules, Electrodynamics, Faraday's Law, Maxwell's Equations, AC Circuits. Volume 5: Optics - Law of Reflection, Snell's Law of Refraction, Optical Elements, Optical Instruments, Wave Optics, Interference, Young's Double Slit, Michelson Interferometer, Fabry-Perot Interferometer, Huygens-Fresnel Principle, Diffraction. Volume 6: Modern Physics - Relativity, Quantum Mechanics, Material Science, Nuclear Physics, Fundamental Particles, Gravity, and Cosmology.




Strength of Materials


Book Description

In addition to coverage of customary elementary subjects (tension, torsion, bending, etc.), this introductory text features advanced material on engineering methods and applications, plus 350 problems and answers. 1949 edition.