Out of Many, One


Book Description

The physics of behavior is a rapidly growing discipline which seeks simple descriptions of an animal's behavior in the language of low dimensional dynamical systems constructed from data driven approaches. Despite rapid progress, we still do not generally understand the rules which shape these emergent behavioral manifolds in the face of complicated neuro-construction -- even in the simplest of animals. In this work, we introduce a non-neuromuscular model system which is complex enough to teach us something new but also simple enough for us to understand deeply: Trichoplax Adhaerens. Through the study of this experimental model, we stand to learn more about how the animal kingdom builds successful animals from millions of specialized cells. Central to this work, we report five experimental discoveries: 1. a broad crossover regime between swimming and stalling in ciliary oscillators interacting with a surface via an adhesion energy which we call 'ciliary walking', 2. sub-second ciliary reorientations can self-organize into a collective phenomena which we call 'ciliary flocking', 3. the dominant behavioral manifold of ciliary flocking is shaped by a stable emergent coherent structure topologically classified as a +1 defect, 4. the top layer of the organism exhibits ultrafast cellular contractions which can reduce the cellular cross section by 50\% in a single second generating nonlinear contraction waves, and 5. the bottom tissue of the organism mixes different cell types to tune the material response introducing the concept of an 'epithelial alloy'. We complement these discoveries with a suite of models by construction at every scale of the problem from organelle to organism. Through a careful study of these frameworks of many-body dynamical systems driven out-of-equilibrium by distributed activity, we report an array of conceptual tools (excitable mechanics of spatio-temporal fields, active-elastic parametric resonance, and an inverse energy cascade) which enable these non-neuromuscular animals to perform agile locomotion across millions of cells without a central controller. We hope these results can inspire future approaches to technologies which exploit distributed agency such as swarm robotics and edge computing. Looking ahead, we suggest that the simple perception-actions cycles of this organism provide a promising opportunity to study the morphological computation embedded in this physical reservoir of high-dimensional, nonlinear tissue dynamics.




Physics of Complex Systems


Book Description

This book analyses the physics of complex systems to elaborate the problems encountered in teaching and research. Inspired by the of Kurt Gödel (including his incompleteness theorems) it considers the concept of time, the idea of models and the concept of complexity before trying to assess the state of physics in general. Using both general and practical examples, the idea of information is discussed, emphasizing its physical interpretation, debates ideas in depth using examples and evidence to provide detailed considerations on the topics. Based on the authors’ own research on these topics, this book puts forward the idea that the application of information measures can provide new results in the study of complex systems. Helpful for those already familiar with the concepts who wish to deepen their critical understanding, Physics of Complex Systems will be extremely valuable both for people that are already involved in complex systems and also readers beginning their journey into the subject. This work will encourage readers to follow and continue these ideas, enabling them to investigate the various topics further.




Physics Avoidance


Book Description

Mark Wilson presents a series of explorations of our strategies for understanding the world. "Physics avoidance" refers to the fact that we frequently cannot reason about nature in the straightforward manner we anticipate, but must seek alternative policies that allow us to address the questions we want answered in a tractable way. Within both science and everyday life, we find ourselves relying upon thought processes that reach useful answers in opaque and roundabout manners. Conceptual innovators are often puzzled by the techniques they develop, when they stumble across reasoning patterns that are easy to implement but difficult to justify. But simple techniques frequently rest upon complex foundations—a young magician learns how to execute a card-guessing trick without understanding how its progressive steps squeeze in on a proper answer. As we collectively improve our inferential skills in this gradually evolving manner, we often wander into unfamiliar explanatory landscapes in which simple words encode physical information in complex and unanticipated ways. Like our juvenile conjurer, we fail to recognize the true strategic rationales underlying our achievements and may turn instead to preposterous rationalizations for our policies. We have learned how to reach better conclusions in a more fruitful way, but we remain baffled by our own successes. At its best, philosophical reflection illuminates the natural developmental processes that generate these confusions and explicates their complexities. But current thinking within philosophy of science and language works to opposite effect by relying upon simplistic conceptions of "cause", "law of nature", "possibility", and "reference" that ignore the strategic complexities in which these concepts become entangled within real life usage. To avoid these distortions, better descriptive tools are required in philosophy. The nine new essays within this volume illustrate this need for finer discriminations through a range of revealing cases, of both historical and contemporary significance.




Physics Of Living Matter: Space, Time And Information, The - Proceedings Of The 27th Solvay Conference On Physics


Book Description

Ever since 1911, the Solvay Conferences have shaped modern physics. The format is quite different from other conferences as the emphasis is placed on discussion. The 27th edition held in October 2017 in Brussels and chaired by Boris Shraiman continued this tradition and addressed some of the most pressing open questions in the fields of biophysics, gathering many of the leading figures working on a wide variety of profound problems.The proceedings contain the 'rapporteur talks' giving a broad overview with unique insights by distinguished renowned scientists. These lectures cover the five sessions: 'Intra-cellular Structure and Dynamics', 'Cell Behavior and Control', 'Inter-cellular Interactions and Patterns', 'Morphogenesis', 'Evolutionary dynamics'.In the Solvay tradition, the proceedings also include the prepared comments to the rapporteur talks. The discussions among the participants — expert, yet lively and sometimes contentious — have been edited to retain their flavor and are reproduced in full. The reader is taken on a breathtaking ride through a fascinating field which is expanding rapidly and which was for the first time the subject of a Solvay Conference on Physics.




Unifying Ecology Across Scales: Progress, Challenges and Opportunities


Book Description

This eBook is a collection of articles from a Frontiers Research Topic. Frontiers Research Topics are very popular trademarks of the Frontiers Journals Series: they are collections of at least ten articles, all centered on a particular subject. With their unique mix of varied contributions from Original Research to Review Articles, Frontiers Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author by contacting the Frontiers Editorial Office: frontiersin.org/about/contact.




Multiscale Methods


Book Description

Small scale features and processes occurring at nanometer and femtosecond scales have a profound impact on what happens at a larger scale and over an extensive period of time. The primary objective of this volume is to reflect the state-of-the-art in multiscale mathematics, modeling, and simulations and to address the following barriers: What is the information that needs to be transferred from one model or scale to another and what physical principles must be satisfied during thetransfer of information? What are the optimal ways to achieve such transfer of information? How can variability of physical parameters at multiple scales be quantified and how can it be accounted for to ensure design robustness?The multiscale approaches in space and time presented in this volume are grouped into two main categories: information-passing and concurrent. In the concurrent approaches various scales are simultaneously resolved, whereas in the information-passing methods the fine scale is modeled and its gross response is infused into the continuum scale. The issue of reliability of multiscale modeling and simulation tools which focus on a hierarchy of multiscale models and an a posteriori model of errorestimation including uncertainty quantification, is discussed in several chapters. Component software that can be effectively combined to address a wide range of multiscale simulations is also described. Applications range from advanced materials to nanoelectromechanical systems (NEMS), biologicalsystems, and nanoporous catalysts where physical phenomena operates across 12 orders of magnitude in time scales and 10 orders of magnitude in spatial scales.This volume is a valuable reference book for scientists, engineers and graduate students practicing in traditional engineering and science disciplines as well as in emerging fields of nanotechnology, biotechnology, microelectronics and energy.







Advances in Imaging and Electron Physics


Book Description

Image processing and a major contribution on microscopy dominate the latest volume of these advances. This volume looks at theory and it's application in a practical sense, with a full account of the methods used and realistic detailed application. The authors do this by examining the latest developments, historic illustrations and mathematical fundamentals of the exciting developments in imaging and applying them to realistic practical situations.Addressing and solving daily issues faced by researchers, consultants and engineers working in this field, makes this book essential reading *Emphasizes broad and in depth article collaborations between world-renowned scientists in the field of image and electron physics*Emphasises theory and it's application in a practical sense *Provides the FIRST full statement of a radical new approach to 'phase calibration' and the solution of this important and difficult problem, pioneered by A, Lannes




The Senses: A Comprehensive Reference


Book Description

The Senses: A Comprehensive Reference, Second Edition, Seven Volume Set is a comprehensive reference work covering the range of topics that constitute current knowledge of the neural mechanisms underlying the different senses. This important work provides the most up-to-date, cutting-edge, comprehensive reference combining volumes on all major sensory modalities in one set. Offering 264 chapters from a distinguished team of international experts, The Senses lays out current knowledge on the anatomy, physiology, and molecular biology of sensory organs, in a collection of comprehensive chapters spanning 4 volumes. Topics covered include the perception, psychophysics, and higher order processing of sensory information, as well as disorders and new diagnostic and treatment methods. Written for a wide audience, this reference work provides students, scholars, medical doctors, as well as anyone interested in neuroscience, a comprehensive overview of the knowledge accumulated on the function of sense organs, sensory systems, and how the brain processes sensory input. As with the first edition, contributions from leading scholars from around the world will ensure The Senses offers a truly international portrait of sensory physiology. The set is the definitive reference on sensory neuroscience and provides the ultimate entry point into the review and original literature in Sensory Neuroscience enabling students and scientists to delve into the subject and deepen their knowledge. All-inclusive coverage of topics: updated edition offers readers the only current reference available covering neurobiology, physiology, anatomy, and molecular biology of sense organs and the processing of sensory information in the brain Authoritative content: world-leading contributors provide readers with a reputable, dynamic and authoritative account of the topics under discussion Comprehensive-style content: in-depth, complex coverage of topics offers students at upper undergraduate level and above full insight into topics under discussion