Physics of Complex and Supermolecular Fluids


Book Description

A collection of papers from the International Symposium on Complex and Supermolecular Fluids presents tutorials and minireviews focusing on the physical properties of complex fluids using the concepts and techniques of condensed matter physics. Stresses the unifying principles, rather than chemical details, behind the physics of diverse materials. Principal topics include colloids, microemulsions, ferrofluids, and micellar systems. Characterizes supermolecular and complex fluids by exploiting their analogies to atomic systems. Papers organized by physical phenomena and not by material.




The Physics of Lyotropic Liquid Crystals


Book Description

This book gives a comprehensive description of the physical properties of lyotropic liquid crystals. Structural features, phase transitions and phase diagrams are discussed in detail. The available experimental data on lyotropic mixtures is presented in the unifying context of the Landau theories. This phenomenological approach is used for establishing connections between structural properties and phase diagrams. The book is suitable for use as a pedagogical introduction to the subject.




Dynamics and Patterns in Complex Fluids


Book Description

The fourth Nishinomiya-Yukawa Memorial Symposium, devoted to the topic of dynamics and patterns in complex fluids, was held on October 26 and 27, 1989, in Nishinomiya City, Japan, where ten invited speakers gave their lectures. A one-day meeting, comprising short talks and poster sessions, was then held on the same topic on October 28 at the Research Institute for Fundamental Physics, Kyoto University. The present volume contains the 10 invited papers and 38 contributed papers presented at these two meetings. The symposium was sponsored by Nishinomiya City, where Prof. Hideki Yukawa once lived and where he wrote the celebrated paper describing the work that was later honored by a Nobel prize. The topic of the fourth symposium was chosen from one of the most vigorously evolving and highly interdisciplinary fields in condensed matter physics. The field of complex fluids is very diverse and still in its infancy and, as a result, the definition of a complex fluid varies greatly from one researcher to the next. One of the objectives of the symposium was to clarify its definition by explicitly posing a number of potentially rich problems waiting to be explored. Indeed, experimentalists are disclosing a variety of intriguing dynamical phenomena in complex systems such as polymers, liquid crystals, gels, colloids, and surfactant systems. We, the organizers, hope that the symposium will contribute to the increasing importance of the field in the coming years.




Principles of Condensed Matter Physics


Book Description

This successful and widely-reviewed book covering the physics of condensed matter systems is now available in paperback.




Pattern Formation In Complex Dissipative Systems: Fluid Patterns, Liquid Crystals, Chemical Reactions


Book Description

In this volume, the problems of pattern formation in physics, chemistry and other related fields in complex and nonlinear dissipative systems are studied. Main subjects discussed are formation mechanisms, properties, statistics, characterization and dynamics of periodic and nonperiodic patterns in the electrohydrodynamics in liquid crystals, Rayleigh-Benard convection, crystallization, viscous fingering and Belouzov-Zhabotinsky chemical reaction. Recent developments in topological and defect-mediated chaos, chaos in systems with large degrees of freedom and turbulence-turbulence transitions are also discussed.




Theoretical Challenges in the Dynamics of Complex Fluids


Book Description

No-one who took part in the NATO Advanced Studies Institute from which this book emerges will have forgotten the experience. True, the necessary conditions for a very successful workshop were satisfied: a field of physics bursting with new power and new puzzles, a matchless team of lecturers, an international gathering of students many of whom had themselves contributed at the forefront of their subject, an admirable overlap of experiment and theory, a good mix of experimenters and theorists, an enviable environment. But who could have foreseen the way the workshop became a focus for future directions, how fresh scientific ideas tumbled out of the discussion periods, how the context of teaching the field produced such fruitfulness of research at the highest level? The organisers did have some specific aims in mind. Perhaps foremost was the desire to compare notes among different areas within the sub field of soft condensed matter physics fast becoming known as "complex fluids". For readers seeking a definition, the prosaic "fluids with bits in" can be passed rapidly over in favour of the elegant discussion of slow variables by Scott Milner in his chapter. The uniting goals of the subject are to model the essential molecular or mesoscopic structure theoretically, and to probe this structure as well as the bulk response of the system experimentally. Our famous examples were: colloids, polymers, liquid crystals, block co-polymers and self-assembling surfactant systems.




The Physics of Complex Systems


Book Description

This volume focuses on the area of the physics of complex systems and provides both an overview of the field and more detailed examination of those topics within the field that are currently of greatest interest to researchers. The properties of complex systems play an important role in a variety of different and overlapping areas in physics, chemistry, biology, mathematics and technology. The research field of complex systems is very broad, but this volume attempts to be comprehensive. This book is a useful reference work for researchers in this area, whether graduate students or advanced academics. Up-to-date reviews of cutting-edge topics are provided, compiled by leading authorities and designed to both broaden the reader's insight and encourage the exploration of new problems in related fields. An overview of the present status of the physics of complex systems is provided on the following general topics: (1) scaling behaviours; (2) supramolecular systems; (3) aggregation, aggregation kinetics and disorderly growth mechanisms; (4) granularly matter; (5) polymers, associating polymers, polyelectrolytes and gels; (6) amphiphiles, emulsions, colloids, membranes and interface phenomena; (7) molecular motors; (8) phase separation and out of equilibrium dynamics; (9) turbulence, chaos and chaotic dynamics; (10) glass transition, supercooled fluids and (11) geometrically constrained dynamics.




Structured Fluids


Book Description

Over the last thirty years, the study of liquids containing polymers, surfactants, or colloidal particles has developed from a loose assembly of facts into a coherent discipline with substantial predictive power. These liquids expand our conception of what condensed matter can do. Such structured-fluid phenomena dominate the physical environment within living cells. This book teaches how to think of these fluids from a unified point of view, showing the far-reaching effects of thermal fluctuations in producing forces and motions. Keeping mathematics to a minimum, the book seeks the simplest explanations that account for the distinctive scaling properties of these fluids. An example is the growth of viscosity of a polymer solution as the cube of the molecular weight of the constituent polymers. Another is the hydrodynamic radius of a colloidal aggregate, which remains comparable to its geometrical radius even though the density of particles in the aggregate becomes arbitrarily small. The book aims for a simplicity, unity and depth not found in previous treatments. The text is supplemented by numerous figures, tables and problems to aid the student.




Solid State Physics


Book Description

Solid State Physics




New Trends in Physics and Physical Chemistry of Polymers


Book Description

Between June 6-10, 1988, the Third Chemical Congress of North America was held at the Toronto Convention Center. At this rare gathering, fifteen thousand scientists attended various symposia. In one of the symposia, Professor Pierre-Gilles de Gennes of College de France was honored as the 1988 recipient of the Amer ican Chemical Society Polymer Chemistry Award, sponsored by Mobil Chemical Corporation. For Professor de Gennes, this international setting could not be more fitting. For years, he has been a friend and a lecturer to the world scientific community. Thus, for this special occasion, his friends came to recount many of his achievements or report new research findings mostly derived from his theories or stimulated by his thoughts. In this volume of Proceedings, titled New Trends in Physics and Physical Chemistry of Polymers, we are glad to present the revised papers for the Symposium and some contributed after the Symposium. In addition, we intend to include most of the lively discussions that took plaGe during the conference. This volume contains a total of thirty-six papers divided into six parts, primarily according to the nature of the subject matter: • Adsorption of Colloids and Polymers. • Adhesion, Fractal and Wetting of Polymers. • Dynamics and Characterization of Polymer Solutions. • Diffusion and Interdiffusion of Polymers. • Entanglement and Reptation of Polymer Melts and Networks. • Phase Transitions and Gel Electrophoresis.