Physics of DX Centers in GaAs Alloys


Book Description

The DX center is a defect present in Gallium Arsenide and related alloys when these materials are doped with n-type impurities.




DX Centers


Book Description

During the last 25 years, the behavior of donors in III-V alloys has been the subject of a very extensive research effort. The research emphasis on AlGaAs compounds is motivated by the industrial importance of AlGaAs/GaAs heterojunction based devices. As seeing it now, "the DX center problem", the behavior of donors in III-V alloys, has shown to be unexpectedly difficult to understand. To determine the microscopic nature of the DX center is still a challenging problem.




D(X) Centres and other Metastable Defects in Semiconductors, Proceedings of the INT Symposium, Mauterndorf, Austria, 18-22 February 1991


Book Description

Since the first reports on metastable defects in III-V and II-VI compound semiconductors appeared in the late 1960s, the number of reports on defects with metastable states has been growing at an ever increasing rate. D(X)-center and other metastability defects cause many technical problems that are exacerbated by the uncertainty and controversy surrounding the mechanisms that cause them. A lively mix of theoretical and experimental discussions, D(X)-Centres and other Metastable Defects in Semiconductors presents a timely investigation of these systems. The book discusses topics such as, the validity of negative or positive U models, as well as alternative views that challenge existing ideas. The richness and precision of experimental data now emerging in the field is chronicled as are new investigative techniques. Based on an INT symposium, this book provides a successful forum where an extraordinary variety of ideas, including new perspectives, are examined critically.




The Physics of Semiconductors


Book Description

The 4th edition of this highly successful textbook features copious material for a complete upper-level undergraduate or graduate course, guiding readers to the point where they can choose a specialized topic and begin supervised research. The textbook provides an integrated approach beginning from the essential principles of solid-state and semiconductor physics to their use in various classic and modern semiconductor devices for applications in electronics and photonics. The text highlights many practical aspects of semiconductors: alloys, strain, heterostructures, nanostructures, amorphous semiconductors, and noise, which are essential aspects of modern semiconductor research but often omitted in other textbooks. This textbook also covers advanced topics, such as Bragg mirrors, resonators, polarized and magnetic semiconductors, nanowires, quantum dots, multi-junction solar cells, thin film transistors, and transparent conductive oxides. The 4th edition includes many updates and chapters on 2D materials and aspects of topology. The text derives explicit formulas for many results to facilitate a better understanding of the topics. Having evolved from a highly regarded two-semester course on the topic, The Physics of Semiconductors requires little or no prior knowledge of solid-state physics. More than 2100 references guide the reader to historic and current literature including original papers, review articles and topical books, providing a go-to point of reference for experienced researchers as well.




Properties of Aluminium Gallium Arsenide


Book Description

The alloy system A1GaAs/GaAs is potentially of great importance for many high-speed electronics and optoelectronic devices, because the lattice parameter difference GaAs and A1GaAs is very small, which promises an insignificant concentration of undesirable interface states. Thanks to this prominent feature, a number of interesting properties and phenomena, such as high-mobility low-dimensional carrier gases, resonant tunnelling and fractional quantum Hall effect, have been found in the A1GaAs/GaAs heterostructure system. New devices, such as modulation-doped FETs, heterojunction bipolar transistors, resonant tunnelling transistors, quantum-well lasers, and other photonic and quantum-effect devices, have also been developed recently using this material system. These areas are recognized as not being the most interesting and active fields in semiconductor physics and device engineering.




Physics Of Semiconductors - Proceedings Of The 20th International Conference (In 3 Volumes)


Book Description

Gathering top experts in the field, the 20th ICPS proceedings reviews the progress in all aspects of semiconductor physics. The proceedings will include state-of-the-art lectures with special emphasis on exciting new developments. It should serve as excellent material for researchers in this and related fields.




Physics Of Semiconductors, The - Proceedings Of The Xxi International Conference (In 2 Volumes)


Book Description

The 21st conference proceedings continue the tradition of the ICPS series. The proceedings cover all aspects of semiconductor physics, including those related to materials, processing and devices. Plenary and invited speakers address areas of major interest.




High Pressure Semiconductor Physics I


Book Description

Since its inception in 1966, the series of numbered volumes known as Semiconductors and Semimetals has distinguished itself through the careful selection of well-known authors, editors, and contributors. The "Willardson and Beer" Series, as it is widely known, has succeeded in publishing numerous landmark volumes and chapters. Not only did many of these volumes make an impact at the time of their publication, but they continue to be well-cited years after their original release. Recently, Professor Eicke R. Weber of the University of California at Berkeley joined as a co-editor of the series. Professor Weber, a well-known expert in the field of semiconductor materials, will further contribute to continuing the series' tradition of publishing timely, highly relevant, and long-impacting volumes. Some of the recent volumes, such as Hydrogen in Semiconductors, Imperfections in III/V Materials, Epitaxial Microstructures, High-Speed Heterostructure Devices, Oxygen in Silicon, and others promise indeed that this tradition will be maintained and even expanded. Reflecting the truly interdisciplinary nature of the field that the series covers, the volumes in Semiconductors and Semimetals have been and will continue to be of great interest to physicists, chemists, materials scientists, and device engineers in modern industry. Volumes 54 and 55 present contributions by leading researchers in the field of high pressure semiconductors. Edited by T. Suski and W. Paul, these volumes continue the tradition of well-known but outdated publications such as Brigman's The Physics of High Pressure (1931 and 1949) and High Pressure Physics and Chemistry edited by Bradley. Volumes 54 and 55 reflect the industrially important recent developments in research and applications of semiconductor properties and behavior under desirable risk-free conditions at high pressures. These developments include the advent of the diamond anvil cell technique and the availability of commercial piston cylinder apparatus operating at high hydrostatic pressures. These much-needed books will be useful to both researchers and practitioners in applied physics, materials science, and engineering.




High-Speed Heterostructure Devices


Book Description

Fuelled by rapid growth in communications technology, silicon heterostructures and related high-speed semiconductors are spearheading the drive toward smaller, faster and lower power devices. High-Speed Heterostructure Devices is a textbook on modern high-speed semiconductor devices intended for both graduate students and practising engineers. This book is concerned with the underlying physics of heterostructures as well as some of the most recent techniques for modeling and simulating these devices. Emphasis is placed on heterostructure devices of the immediate future such as the MODFET, HBT and RTD. The principles of operation of other devices such as the Bloch Oscillator, RITD, Gunn diode, quantum cascade laser and SOI and LD MOSFETs are also introduced. Initially developed for a graduate course taught at Ohio State University, the book comes with a complete set of homework problems and a web link to MATLAB programs supporting the lecture material.